Focus on variability: New tools to study intra-individual variability in developmental data

P. van Geert, M. van Dijk
Department of Developmental Psychology, The Heijmans Institute, University of Groningen, Grote Kruisstraat 2/1, Groningen TS 9712, The Netherlands
Received 1 February 2001; received in revised form 28 January 2002; accepted 15 February 2002

Abstract
In accordance with dynamic systems theory, we assume that variability is an important developmental phenomenon. However, the standard methodological toolkit of the developmental psychologist offers few instruments for the study of variability. In this article we will present several new methods that are especially useful for visualizing and describing intra-individual variability in individual time-serial data of repeated observations. In order to illustrate these methods, we apply them to data of early language development. After reviewing the common techniques and measures, we present new methods that show variability in developmental time-series data: the moving min–max graph, and the progmax–regmin graph. In addition, we demonstrate a technique that is able to detect sudden increases of variability: the critical frequency method. Also, we propose a technique that is based on a central assumption of the measurement-error-hypothesis: namely the symmetric distribution of error. Finally, as traditional statistical techniques have little to offer in testing variability hypotheses, we examine the possibilities that are provided by random sampling techniques. Our aim with the present discussion of variability and the demonstration of some simple yet illustrative techniques is to help researchers focus on rich additional sources of information that will lead to more interesting hypotheses and more powerful testing procedures, adapted to the unique nature of developmental data.

© 2002 Elsevier Science Inc. All rights reserved.

Keywords: Intra-individual variability; Dynamic systems theory; Early language acquisition; Development; MLU; Spatial prepositions; Statistical techniques; Random sampling techniques