Eye tracking:
A comprehensive guide to methods and measures

This work is copyright of the authors, is published by Oxford University Press, and must not be circulated or provided to any third party in any form.

Kenneth Holmqvist
The Humanities Laboratory
Lund University
Sweden

Marcus Nyström
The Humanities Laboratory
Lund University
Sweden

Richard Andersson
The Humanities Laboratory
Lund University
Sweden

Richard Dewhurst
The Humanities Laboratory
Lund University
Sweden

Halszka Jarodzka
Centre for Learning Sciences and Technologies
Heerlen
the Netherlands

Joost van de Weijer
The Humanities Laboratory
Lund University
Sweden

OXFORD UNIVERSITY PRESS • OXFORD 2010
Why we Wrote this Book

This book is written by and for researchers who are still in that part of their careers where they are actively using the eye-tracker as a tool; those who have to deal with the technology, the signals, the filters, the algorithms, the experimental design, the programming of stimulus presentation, instructions to participants, working the varying tools for data analysis, and of course, worrying about all the different things that must not go wrong!

A central theme of the book concerns the wide range of fields eye tracking covers. Suppose an educational psychologist wishes to use eye tracking to evaluate a new software package designed to support learning to read. She may have an excellent idea as a starting point, and some understanding of the kind of results eye tracking could provide to tackle her research question, but unless she and the group around her are also adept in computer science, it is unlikely she will know how the eye movement data she collects is generated: How raw data samples are converted into fixations and saccades using event detection algorithms, how the different representations of eye movement data are calculated, and how all the measures of eye movements relate to these processes. All this is important because subtleties involved in working with eye-tracking data can have large consequences for the final results, and thus whether our educational psychologist can confidently conclude that her software package is effective or not in supporting the development of reading skills.

This is not to say that hard-core computer science skills are the crux of good eye-tracking research, for this is certainly not the case. One can equally envisage a situation where an expert in programming and the manipulation of data plans and executes an eye-tracking study poorly, simply because she is not trained in the principles of experimental design, and the associated literature on the visual system and oculomotor control.

There are many contrasts between the diverging schools of thought which use eye tracking; practices and preferences vary, but certainly experts in different fields do not draw on each other's strengths enough. We felt there was a need to pinpoint the relative merits of adopting methods based in one field alone, whilst highlighting that the lack of synergy between different disciplines can lead to sub-optimal research practices, and new advancements being overlooked.

Besides technical details and theory, however, the heart of this book revolves around practicality. At the Humanities Laboratory at Lund University we have been teaching eye-tracking methodology regularly since 2000. We commonly see newcomers to the technique run aground when encountering just the sort of issues raised above, but beginners struggle with problems which are even more practical in nature. Hands-on advice for how to actually use eye-trackers is very limited. Setting up the eye camera and performing a good calibration routine is just as important as the design of the study and how data is handled, for if the recording is poor your options are limited from the outset.

There are fundamental methodological skills which underpin using eye-trackers, but at the other end of the spectrum there is also the vast choice of measures available to the eye-tracking researcher. For the present text to be complete, therefore, we felt a requirement should also be to draw together eye-tracking measures, as well as methods, into an understandable structure. So, starting around 2005, we began producing a taxonomy of all eye-movement methods and measures used by researchers, examining how the measures are related to each other, what type of data quality they rely on, and previous data processing they require. Our classification work thus consisted of searching the method sections from thousands of journal papers, book chapters, PhD theses and conference proceedings. Every measure and method we found was catalogued and put into a growing system. Some of the measures were extremely elusive, as they are known by different names, not only between research fields, but even within, and often the precise implementations are missing in the
published texts. At first, we were very unclear how to classify measures. Some varieties of taxonomic structures that we rejected can be found on p. 463. We ended up with a classification structure where the operational definitions are at the centre.

Users of eye-trackers often lack proficient training because there is little or no teaching community to rely on. As a result people are often self-taught, or depend on second-hand knowledge which may be out of date or even incorrect. When they participate in our eye-tracking methodology courses, we find that many new users are very focused on their research questions, but are surprised how much time they need to invest in order to master eye tracking properly. Often people attending have just purchased an eye-tracker to compliment their research, or for use in their company to tackle ergonomic and marketing-related questions. Our aim for this book is to make learning to use eye-trackers a much easier process for these readers. If you have a solid background in experimental psychology, computer science, or mathematics you will often find it straightforward to embrace the technologies and workflows surrounding eye tracking. But whatever your background, you should be able to achieve the same level of knowledge and understanding from this book as you would from training on eye tracking in-house in a fully competent laboratory.

More specifically, this book has been written to be a support when:

1. Evaluating or acquiring a commercial eye-tracker,
2. Planning an experiment where eye tracking is used as a tool,
3. About to record eye-movement data,
4. Planning how to process and interpret the recorded data, before carrying out statistical tests on it,
5. Reading or reviewing eye-movement research.

In our efforts to classify eye-tracking methods and measures, combined with useful practical hints and tips, we hope to provide the reader with the first comprehensive textbook on methodology for new users of eye tracking, but which also caters for the advanced researcher. Previous versions of this book have been used in eye-tracking education in Lund. Also, colleagues of ours in Potsdam, Tübingen, and Helsinki have used earlier manuscripts of the book when teaching and training masters and PhD level students in eye tracking. Lastly, although not the target audience, manufacturers have already shown a great interest in the book at the manuscript stage, which we hope may lead to even better eye-trackers in the future.

How to submit suggestions

Please send comments and suggestions to etbook@humlab.lu.se.
Index

Abducting, 24
Acceleration, 332–336
event detection, 151
filter, 48–49
microsaccade detection, 183
operational definition, 332
optic artefacts, 163, 181
pupil dilation, 435
saccade detection, 152, 158, 171–175
saccadic, 332–333
smooth pursuit, 335
smooth pursuit detection, 179–181
threshold for detection, 156
data driven, 161
Accuracy, 34, 41–43
AOI, 212–213, 223
binocular averaging, 60
calibration, 42
calibration points, 129
corners, 132
disparity measure, 449
fuzzy AOIs, 212–213
gaze estimation, 42
head movements, 43
judged from scanpath, 257
limbus-tracking, 28
offset compensation, 224
participant properties, 43
pupil-only recording, 39
saccadic, 452–453
temporal, 41
type of eye-tracker, 51–56
validation, 132
Acuity
after blink, 326
cortical magnification, 21
fall-off versus Gaussian, 246
Adducting, 24
Affirming the consequent, see Backward reasoning
Age effects
antisaccades, 307
blink rate, 411
disparity, 59, 450
functional visual field, 381
number of fixations, 414
number of regressions, 426
number of returns, 424
pupil diameter, 394
pupil velocity, 331
saccadic amplitude, 315
saccadic latency, 432
saccadic velocity, 329
smooth pursuit gain, 451
smooth pursuit latency, 433
smooth pursuit velocity, 330
square-wave jerk, 408
Air bubbles, 124–125
Air pollutant effects
blink rate, 411
Alcohol effects
antisaccades, 306
dwell rate, 419
entry time, 438
fixation duration, 383
functional visual field, 395
gaze position, 395
saccadic duration, 322
saccadic latency, 432
saccadic velocity, 329
smooth pursuit gain, 451
square-wave jerk rate, 408
Ambient versus focal, 266–267
Amplitude
operational definition, 311–312
saccadic, 312–315
versus direction, 301
Analysis software, 141–143
AOE editor, 188
attention map settings, 236
event detection dialogues, 148
Angle between map vectors, 374–375
ANOVA, 92
proportion over time, 441
Anticipation effects
blink latency, 434
gaze position, 396
saccadic latency, 431
saccadic velocity, 329
smooth pursuit latency, 433
smooth pursuit phase lag, 452
Antisaccade, 305–307
correct amplitude, 305
correct latency, 305
error amplitude, 305
error latency, 305
time to correct, 305
Anxiety effects
blink latency, 434
GSR, 97
number of fixations, 414
AOI, see Area of Interest
AOI dwell, see Dwell
AOI first, see First skip
AOI hit, 189
AOI map, see Dwell map
AOI return, see Return
AOI total skip, see Total skip
AOI transition, see Transition
Area of Interest, 187–230
accuracy, 212–213, 223
automated positioning, 218
clustering from data, 219
convex hull, 219
crowding, 217
distributed, 210–212
dynamic, 209, 228
overlap, 221
teditor, 188
experimental design, 80
expert definitions, 218
from attention maps, 219, 248–250
fuzzy, 212–213
gaze-overlaid videos, 227–229
gridded, 192, 212
hands-on advice, 188–189
hypothesis, 188
margin, 225
menu selection overlap, 221
minimal size, 223
normalisation, 225–227
offset, 224
over stimulus density, 208
over time, 197–205
overlapping, 221
participant-specific, 214
post-hoc positioning, 188, 217–220
precision, 212–213
reading stimuli, 218
stimulus-inherent order, 214
string, see String
versus plane, 208
Artificial eye, 33–44
ASL, 12–16
eye image, 116
Eyenal
settings recommendations, 155
event detection dialogue, 148
event detection principle, 155
Attention
blink, 432
covet, 99, 309
Attention effects
release, saccadic latency, 431
split, saccadic latency, 431
to auditory signals
pupil dilation latency, 435
Attention map, 231–252
altitude, 234
basic construct, 234–238, 244–245
colour mapping, 236
definition, 237
difference, 372–373
effect sizes, 241
entry time map, 233
eye movement modelling examples, 252
filling, 236, 247
fixation duration, 247
fixations versus raw data, 236, 246
foveation, 250–251
Gaussian function, 234, 244–246
Gaussian landscape, 233
generating AOIs, 248–250
gridded AOI, 233
hands-on advice, 238
heat map versus scanpath, 239
interpreting visualizations, 239–243
kernel width, 236
luminance map, 235
metaphor, 245
landscape, 248
sand, 248
normalization, 248
number of participants, 243–244
principle for building, 233
probability density function, 248
proportion of participants map, 233
representation of scanpath, 272–273
retinal acuity falled, 246
sequence similarity, 347
settings dialogue, 231
sigma (σ), 244–248
AOI generation, 250
effect on heat maps, 245
setting, 246
topological landscape, 233
Attentional landscape, see Attention map
Autism effects
gaze position, 395
smooth pursuit velocity, 330
Autofocus in eye camera, 38
Auxiliary data
button-box, 135
data analysis, 286–297
alignment mediators, 289–290
event-based coalignment, 286–290
latency analysis, 289–290
EEG, 98–99, 135–136, 287–288
experimental design, 95–109
fMRI, 99, 135, 288
GSR, 97, 135
keystroke logging, 290
Likert scale, 96–97
measures, 295
methodological triangulation, 95, 290
motion tracking, 98, 137, 289
non-interfering set-up, 135
questionnaires, 96–97
reaction time, manual, 97
recording, 134–139
representations, 295
statistical considerations, 295
Average landing altitude, 369, 373–374
Back-up saccade, 179
rate, 408–409
Backtrack, 262–263
number of, 427
Backward reasoning, 71–73
from heat maps, 239–241
with scanpaths, 279
Bee swarms, 5
Between-subjects design, 83–86
<table>
<thead>
<tr>
<th>Index Terms</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binned time</td>
<td>205–206</td>
</tr>
<tr>
<td>Binocular</td>
<td>59–60</td>
</tr>
<tr>
<td>averaging</td>
<td>60</td>
</tr>
<tr>
<td>precision</td>
<td>38</td>
</tr>
<tr>
<td>calibration</td>
<td>133</td>
</tr>
<tr>
<td>definitions</td>
<td>24</td>
</tr>
<tr>
<td>disparity</td>
<td>449–450</td>
</tr>
<tr>
<td>event detection</td>
<td>170</td>
</tr>
<tr>
<td>microsaccade</td>
<td>182, 308</td>
</tr>
<tr>
<td>parallax error</td>
<td>61</td>
</tr>
<tr>
<td>saccade direction</td>
<td>303</td>
</tr>
<tr>
<td>saccadic amplitude</td>
<td>313</td>
</tr>
<tr>
<td>sampling frequency</td>
<td>31</td>
</tr>
<tr>
<td>Birth, premature, effects</td>
<td></td>
</tr>
<tr>
<td>antisaccades</td>
<td>307</td>
</tr>
<tr>
<td>Bistrata contour ellipse area</td>
<td>365–366</td>
</tr>
<tr>
<td>Blink</td>
<td></td>
</tr>
<tr>
<td>amplitude</td>
<td>320</td>
</tr>
<tr>
<td>as noise</td>
<td>181</td>
</tr>
<tr>
<td>in EEG data</td>
<td>136</td>
</tr>
<tr>
<td>as seen in scapula</td>
<td>177</td>
</tr>
<tr>
<td>attentional</td>
<td>432</td>
</tr>
<tr>
<td>closed/closing time</td>
<td>178, 324</td>
</tr>
<tr>
<td>detection</td>
<td>176–178</td>
</tr>
<tr>
<td>algorithms</td>
<td>177</td>
</tr>
<tr>
<td>principle</td>
<td>152</td>
</tr>
<tr>
<td>droopy eyelid</td>
<td>178, 324</td>
</tr>
<tr>
<td>duration</td>
<td>178, 324–326</td>
</tr>
<tr>
<td>during saccade</td>
<td>326</td>
</tr>
<tr>
<td>eye-tracker recovery</td>
<td>53</td>
</tr>
<tr>
<td>eyelid tracking</td>
<td>178, 324</td>
</tr>
<tr>
<td>in velocity plot</td>
<td>177</td>
</tr>
<tr>
<td>rate</td>
<td>410–412</td>
</tr>
<tr>
<td>reflex latency</td>
<td>434</td>
</tr>
<tr>
<td>reopening time</td>
<td>178, 324</td>
</tr>
<tr>
<td>saccadic duration</td>
<td>321</td>
</tr>
<tr>
<td>suppression</td>
<td>326</td>
</tr>
<tr>
<td>Bonferroni correction</td>
<td>95</td>
</tr>
<tr>
<td>Boundary paradigm</td>
<td>50</td>
</tr>
<tr>
<td>Boxplot</td>
<td>89</td>
</tr>
<tr>
<td>Bright pupil</td>
<td>25</td>
</tr>
<tr>
<td>in dark-pupil system</td>
<td>127</td>
</tr>
<tr>
<td>Button-box</td>
<td>135</td>
</tr>
<tr>
<td>Calibration</td>
<td>128–134</td>
</tr>
<tr>
<td>acknowledgment method</td>
<td>130</td>
</tr>
<tr>
<td>area</td>
<td></td>
</tr>
<tr>
<td>eye camera set-up</td>
<td>117–118</td>
</tr>
<tr>
<td>tilted</td>
<td>133</td>
</tr>
<tr>
<td>binocular</td>
<td>133</td>
</tr>
<tr>
<td>bottom corners</td>
<td>131</td>
</tr>
<tr>
<td>coordinate</td>
<td>61</td>
</tr>
<tr>
<td>eye camera</td>
<td>130</td>
</tr>
<tr>
<td>eyelashes</td>
<td>131</td>
</tr>
<tr>
<td>gaze estimation</td>
<td>29</td>
</tr>
<tr>
<td>geometry</td>
<td>129, 132</td>
</tr>
<tr>
<td>head-mounted tricks</td>
<td>133–134</td>
</tr>
<tr>
<td>move calibration point</td>
<td>131</td>
</tr>
<tr>
<td>number of points</td>
<td>128</td>
</tr>
<tr>
<td>ocular dominance</td>
<td>119</td>
</tr>
<tr>
<td>parallax</td>
<td>60–61</td>
</tr>
<tr>
<td>procedure</td>
<td>129</td>
</tr>
<tr>
<td>upper corners</td>
<td>131</td>
</tr>
<tr>
<td>validation</td>
<td>132</td>
</tr>
<tr>
<td>Calibration area</td>
<td>128–130</td>
</tr>
<tr>
<td>precision measurement</td>
<td>36</td>
</tr>
<tr>
<td>Careful inspection effects</td>
<td></td>
</tr>
<tr>
<td>dwell time</td>
<td>386–390</td>
</tr>
<tr>
<td>fixation duration</td>
<td>381–383</td>
</tr>
<tr>
<td>focal processing</td>
<td>265–267</td>
</tr>
<tr>
<td>Catch-up saccade</td>
<td>179</td>
</tr>
<tr>
<td>amplitude</td>
<td>315</td>
</tr>
<tr>
<td>square-wave jerk rate</td>
<td>408</td>
</tr>
<tr>
<td>in space-time diagram</td>
<td>179</td>
</tr>
<tr>
<td>rate</td>
<td>408–409</td>
</tr>
<tr>
<td>smoothness of pursuit</td>
<td>338</td>
</tr>
<tr>
<td>Categorical regression analysis</td>
<td>93</td>
</tr>
<tr>
<td>scale</td>
<td>90</td>
</tr>
<tr>
<td>Causal</td>
<td></td>
</tr>
<tr>
<td>chain, restraining</td>
<td>73</td>
</tr>
<tr>
<td>effect</td>
<td>71–75</td>
</tr>
<tr>
<td>hidden factor</td>
<td>75</td>
</tr>
<tr>
<td>Central bias effects</td>
<td></td>
</tr>
<tr>
<td>gazes position</td>
<td>397</td>
</tr>
<tr>
<td>Childhood abuse effects</td>
<td></td>
</tr>
<tr>
<td>smooth pursuit velocity</td>
<td>330</td>
</tr>
<tr>
<td>Chin rest</td>
<td>51</td>
</tr>
<tr>
<td>Coalignement</td>
<td>286–290</td>
</tr>
<tr>
<td>mediator</td>
<td>289–290</td>
</tr>
<tr>
<td>COGAIN</td>
<td>12</td>
</tr>
<tr>
<td>Coil system</td>
<td>10</td>
</tr>
<tr>
<td>glissade eradication</td>
<td>167</td>
</tr>
<tr>
<td>saccadic skew</td>
<td>335</td>
</tr>
<tr>
<td>saccadic velocity</td>
<td>326</td>
</tr>
<tr>
<td>Communication</td>
<td>250</td>
</tr>
<tr>
<td>eye–eye span</td>
<td>447</td>
</tr>
<tr>
<td>gaze position</td>
<td>397</td>
</tr>
<tr>
<td>Competence</td>
<td>1, 9–16</td>
</tr>
<tr>
<td>in lab</td>
<td>20</td>
</tr>
<tr>
<td>manufacturers</td>
<td>15</td>
</tr>
<tr>
<td>sales people</td>
<td>14</td>
</tr>
<tr>
<td>technical</td>
<td>11</td>
</tr>
<tr>
<td>users</td>
<td>14</td>
</tr>
<tr>
<td>Compressed string</td>
<td>193</td>
</tr>
<tr>
<td>Concurrent verbalization</td>
<td></td>
</tr>
<tr>
<td>analysis</td>
<td>289–296</td>
</tr>
<tr>
<td>experimental design</td>
<td>101–103</td>
</tr>
<tr>
<td>recording</td>
<td>137–139</td>
</tr>
<tr>
<td>Cones</td>
<td></td>
</tr>
<tr>
<td>in heat maps</td>
<td>245</td>
</tr>
<tr>
<td>in the retina</td>
<td>21</td>
</tr>
<tr>
<td>Confirmation effects</td>
<td></td>
</tr>
<tr>
<td>number of returns</td>
<td>423</td>
</tr>
<tr>
<td>Consent form</td>
<td>116, 140</td>
</tr>
<tr>
<td>Contact lenses</td>
<td>124–125</td>
</tr>
<tr>
<td>blink rate</td>
<td>411</td>
</tr>
<tr>
<td>hard</td>
<td>125</td>
</tr>
<tr>
<td>soft</td>
<td>124</td>
</tr>
<tr>
<td>Contextual predictability effects</td>
<td></td>
</tr>
<tr>
<td>skipping proportion</td>
<td>420</td>
</tr>
<tr>
<td>Convex hall</td>
<td>A01 generation, 219</td>
</tr>
</tbody>
</table>
area, 364
Coordinate (x, y), 61–64
Cornea, 21
Corneal reflection, 21
data recording, 116–134
eye-tracker latency, 44
false, 126
gaze estimation, 24–29
outside iris, 130–132
precision, 38–39
split
 by contact lense, 124
 by tears, 127
velocity in data, 158, 163
Correlation between attention maps, 375–376
Cortical magnification, 21
Coverage, 367–368
Cross-recurrence analysis, 447
Crowding, 217
Cued retrospective protocol
 analysis, 290–296
 experimental design, 99–108
 recording, 137–139
Culture effects
gaze position, 395
Cumulative transition time, 323
Curiosity effects
pupil dilation, 394
Curvature
 glissadac, 337
 saccadic, 336–337
Customers of eye-trackers, 12–16
check-list, 16
groups, 12

Dark versus bright pupil, 25
Darkness effects
data quality, 19
microsaccadic amplitude, 318
smooth pursuit, 178
Data coordinates, see Coordinate
Data exploration, 87
Data files, 143
Data loss, 141
Data modelling, 94
Data quality, 29–50
access to eye video, 116, 127
allergy, 127
auxiliary recordings, 137–138
contact lenses, 124–125
data loss, 141
droopy eyelids, 120–122
event detection, 161–164, 181–182
exploration phase, 140
eye image, 116–134
filtering, 47–49
glasses, 122–124
incandescent light, 126
lab illumination, 19
mascara, 119–120
mirror, 127
optic conditions, 117
scanpath visualization, 257
speck, 128
sunlight, 125
tears, 126
verbal retrospection, 138
Data sample, 31
validity, 178
versus events, 224
Data transformation, 91
Debroting, 139–140
cover story, 79
Demand characteristics, 77
Dependent variable, 65, 74–77
Diabetes effects
 pupil diameter, 394
Dijkstra's algorithm, 276
Diplopia, 24, 59
Direction
 backrack, 307–308
 glissades, 308
 leading saccade, 307–308
 look ahead, 307–308
 microsaccade, 308–309
 regression, 307–308
 scanpath, 310–311
 smooth pursuit, 309–310
 versus amplitude, 301
Direction, operational definition, 301–302
Disjacency, see Disparity
Disorder effects
 neurological
 antisaccades, 306
 disparity, 450
 fixation duration, 383
 glissadac proportion, 405
 number of regressions, 426
 saccadic gain, 453
 saccadic velocity, 329
 smooth pursuit lag, 453
 square-wave jerk rate, 408
 vergence, 59
 psychiatric
 antisaccades, 306
 catch-up saccades, 409
 number of fixations, 414
 saccadic latency, 432
 visual
 number of fixations, 414
 number of regressions, 425

Disparity, 24
 measure, 449–450
Dispersion algorithm
definition, 171
dispersion calculation, 155
effect of settings, 159
principle, 153
sampling frequency, 167
settings, 171
Dispersion threshold
 imprecision, 155
 sampling frequency, 167
settings, 155
Distractor effects
 saccadic curvature, 337
 saccadic latency, 431
 smooth pursuit gain, 451
 smooth pursuit latency, 433
Distributed AOI, 210–212
Dominant eye, 119
Donder’s law, 21
Downsampling
 attention maps, 236
 precision increase, 38
 spatial, 269
temporal (binning), 206
Drift
 amplitude, 317–318
 AOIs, 224–225
 correction, 43, 134, 225
 definition, 33
 degrading accuracy, 42
 introduction, 23
 post-saccadic, 167
Drueckel cyclide
eye camera setup, 120–122
gaze estimation, 28–29
Drug effects
 antisaccades, 306
 catch-up saccades, 409
gaze position, 395
 pupil diameter, 394
 pupil velocity, 331
saccadic curvature, 337
saccadic duration, 322
saccadic latency, 432
saccadic skew, 335
saccadic velocity, 329
smooth pursuit gain, 451
smooth pursuit velocity, 330
square-wave jerk rate, 408
Dual Purkinje system, 10, 136
Dwell, 190
counting, 417–419
 map, 192
 number of, 417–418
 proportion, 418
 rate, 419
time, 386–389
too small AOI, 224
total, 389
versus transitions, 196
Dynamic
 AOI, 209
 gaze-overlaid video, 228
 attention map, 252
 overlap of AOIs, 221
 overshot, 183
 scanpath visualizations, 254
 scene coordinates, 63
 smooth pursuit detection, 178–181
stimuli
 dispersion algorithm, 168
 manual event coding, 175
stimuli effects
 saccadic rate, 405
 visualization for retrospection, 138–139
Dynamic programming for event detection, 174
Dyslexia effects
 disparity, 450
 saccadic amplitude, 315
Earth mover distance, 371–372
Eating disorder effects
 gaze position, 395
EEG, see Electroencephalography
Effect size, 241
EFPR, see Eye-fixture-related potential
Electroencephalography
 co-analysis, 248
 data recording, 136
 method, 98–99
Electrooculography, 10
Emotion effects
 GSR, 97
 pupil diameter, 394
 pupil dilation latency, 435
Entropy
 normalized, 342
 relative, 368–369
 transition matrix, 341–342
Entry order, 339
Entry time, 437–438
Environmental noise
 definition, 34
EOG, see electrooculography
ERP, see event-related potentials
Euclidean distance, 370
Event definition, 2
 ambient subscreen, 266–267
 AOI hit, 189
 backtrack, 262–263
 blink, 176–178
dwell, 221
 first skip, 191
 fixation, 148–149, 171–176
 focal subscreen, 266–267
glissade, 183
global subscreen, 265–266
 inter-microsaccade interval, 183
 local subscreen, 265–266
 look-ahead, 265
 look-back, 264–265
 microsaccade, 182–184
 noise, 181–182
 ocular flutter, 184
 optic artefacts, 181–182
 re-inspection, 264
reading, 267–268
regression scanpath, 264
 regressions, 263–264
return, 191
saccade, 149–175
scanning, 267–268
smooth pursuit, 178–181
<table>
<thead>
<tr>
<th>Entry</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>square-wave jerk</td>
<td>183–184</td>
</tr>
<tr>
<td>total skip</td>
<td>192</td>
</tr>
<tr>
<td>transition</td>
<td>190–191</td>
</tr>
<tr>
<td>visual intake</td>
<td>169</td>
</tr>
<tr>
<td>Event detection</td>
<td></td>
</tr>
<tr>
<td>acceleration setting</td>
<td>156</td>
</tr>
<tr>
<td>algorithmic definitions</td>
<td>171–175</td>
</tr>
<tr>
<td>binocular</td>
<td>170</td>
</tr>
<tr>
<td>data driven threshold</td>
<td>161</td>
</tr>
<tr>
<td>dispersion algorithms</td>
<td>153</td>
</tr>
<tr>
<td>dispersion calculation</td>
<td>155</td>
</tr>
<tr>
<td>dynamic programming</td>
<td>174</td>
</tr>
<tr>
<td>effect of settings</td>
<td>158</td>
</tr>
<tr>
<td>lost fixations</td>
<td>149</td>
</tr>
<tr>
<td>main sequence</td>
<td>173</td>
</tr>
<tr>
<td>manual</td>
<td>175–176</td>
</tr>
<tr>
<td>Markov model</td>
<td>174</td>
</tr>
<tr>
<td>noise</td>
<td>161–164, 181</td>
</tr>
<tr>
<td>online</td>
<td>175</td>
</tr>
<tr>
<td>optic artefacts</td>
<td>161–164, 181</td>
</tr>
<tr>
<td>post-recording filtering</td>
<td>158</td>
</tr>
<tr>
<td>precision</td>
<td>155, 161–164</td>
</tr>
<tr>
<td>principle</td>
<td>151</td>
</tr>
<tr>
<td>sampling frequency</td>
<td>167–168</td>
</tr>
<tr>
<td>settings</td>
<td></td>
</tr>
<tr>
<td>dialogue</td>
<td>148</td>
</tr>
<tr>
<td>manufacturer settings recommendations</td>
<td>155</td>
</tr>
<tr>
<td>smooth pursuit</td>
<td>175</td>
</tr>
<tr>
<td>two-pass algorithm</td>
<td>173</td>
</tr>
<tr>
<td>use of eye video</td>
<td>176</td>
</tr>
<tr>
<td>variable precision</td>
<td>162</td>
</tr>
<tr>
<td>velocity algorithm</td>
<td>153</td>
</tr>
<tr>
<td>velocity and acceleration</td>
<td>175</td>
</tr>
<tr>
<td>velocity profile</td>
<td>174</td>
</tr>
<tr>
<td>velocity setting</td>
<td>156</td>
</tr>
<tr>
<td>vestibular ocular reflex</td>
<td>175</td>
</tr>
<tr>
<td>Event-related potentials</td>
<td>98–99</td>
</tr>
<tr>
<td>Examples of studies and material</td>
<td>5–6</td>
</tr>
<tr>
<td>Experience, see expertise</td>
<td></td>
</tr>
<tr>
<td>Experimental design</td>
<td>65–109</td>
</tr>
<tr>
<td>confound</td>
<td>72, 74</td>
</tr>
<tr>
<td>order effect</td>
<td>82</td>
</tr>
<tr>
<td>position data</td>
<td>394–398</td>
</tr>
<tr>
<td>control</td>
<td>74–75, 112</td>
</tr>
<tr>
<td>correlational study</td>
<td>74–75</td>
</tr>
<tr>
<td>post-hoc AOI positioning</td>
<td>221</td>
</tr>
<tr>
<td>Experimentation effects</td>
<td>78–79</td>
</tr>
<tr>
<td>Expertise</td>
<td></td>
</tr>
<tr>
<td>AOI definitions</td>
<td>218</td>
</tr>
<tr>
<td>eye movement modelling examples</td>
<td>252</td>
</tr>
<tr>
<td>visual field</td>
<td>396</td>
</tr>
<tr>
<td>Expertise effects</td>
<td></td>
</tr>
<tr>
<td>entry time</td>
<td>438</td>
</tr>
<tr>
<td>eye–hand span</td>
<td>446</td>
</tr>
<tr>
<td>fixation duration</td>
<td>383</td>
</tr>
<tr>
<td>distribution skewness</td>
<td>384</td>
</tr>
<tr>
<td>fixation stability</td>
<td>361</td>
</tr>
<tr>
<td>functional visual field</td>
<td>381</td>
</tr>
<tr>
<td>gaze position</td>
<td>396</td>
</tr>
<tr>
<td>global-local ratio</td>
<td>339</td>
</tr>
<tr>
<td>number of dwells</td>
<td>417</td>
</tr>
<tr>
<td>number of fixations</td>
<td>414</td>
</tr>
<tr>
<td>number of transitions</td>
<td>423</td>
</tr>
<tr>
<td>saccadic latency</td>
<td>432</td>
</tr>
<tr>
<td>smooth pursuit velocity</td>
<td>329</td>
</tr>
<tr>
<td>unique AOIs</td>
<td>344</td>
</tr>
<tr>
<td>Exploratory study</td>
<td>66</td>
</tr>
<tr>
<td>Express fixations</td>
<td>157</td>
</tr>
<tr>
<td>Express saccades</td>
<td>431</td>
</tr>
<tr>
<td>Eye and Pen software</td>
<td>98</td>
</tr>
<tr>
<td>Eye camera</td>
<td></td>
</tr>
<tr>
<td>angle</td>
<td>117</td>
</tr>
<tr>
<td>autofocus</td>
<td>38</td>
</tr>
<tr>
<td>gaze estimation</td>
<td>24, 27</td>
</tr>
<tr>
<td>head-mounted</td>
<td>55</td>
</tr>
<tr>
<td>image acquisition</td>
<td>26</td>
</tr>
<tr>
<td>manipulation during recording</td>
<td>134</td>
</tr>
<tr>
<td>manual focus</td>
<td>125</td>
</tr>
<tr>
<td>mascara</td>
<td>119–120</td>
</tr>
<tr>
<td>resolution</td>
<td>37</td>
</tr>
<tr>
<td>set-up</td>
<td>116–128</td>
</tr>
<tr>
<td>Eye colour</td>
<td>38</td>
</tr>
<tr>
<td>Eye dryness effects</td>
<td></td>
</tr>
<tr>
<td>blink rate</td>
<td>411</td>
</tr>
<tr>
<td>Eye laser surgery</td>
<td>13, 28</td>
</tr>
<tr>
<td>Eye movement speed</td>
<td>330</td>
</tr>
<tr>
<td>Eye movements</td>
<td>21–23</td>
</tr>
<tr>
<td>binocular properties</td>
<td>24, 450</td>
</tr>
<tr>
<td>measures</td>
<td>301–355</td>
</tr>
<tr>
<td>Eye muscles</td>
<td>22</td>
</tr>
<tr>
<td>Eye position</td>
<td></td>
</tr>
<tr>
<td>Donders’s law</td>
<td>21</td>
</tr>
<tr>
<td>measures</td>
<td>356–398</td>
</tr>
<tr>
<td>Eye velocity</td>
<td>330</td>
</tr>
<tr>
<td>Eye video</td>
<td>116–132</td>
</tr>
<tr>
<td>calibration points</td>
<td>130</td>
</tr>
<tr>
<td>image</td>
<td>116</td>
</tr>
<tr>
<td>manual fixation detection</td>
<td>176</td>
</tr>
<tr>
<td>shadows</td>
<td>122–123</td>
</tr>
<tr>
<td>Eye–hand span</td>
<td>445–447</td>
</tr>
<tr>
<td>Eye–mind hypotheses</td>
<td></td>
</tr>
<tr>
<td>affirming the consequent</td>
<td>71–73</td>
</tr>
<tr>
<td>scampathist</td>
<td>279–280</td>
</tr>
<tr>
<td>strong</td>
<td>378–379</td>
</tr>
<tr>
<td>time-locking hypothesis</td>
<td>199–203</td>
</tr>
<tr>
<td>Eye–mouse distance</td>
<td>448–449</td>
</tr>
<tr>
<td>Eye–voice latency</td>
<td>442–445</td>
</tr>
<tr>
<td>Eye–voice span</td>
<td>443</td>
</tr>
<tr>
<td>Eye–fixation-related potential</td>
<td>98, 287–288</td>
</tr>
<tr>
<td>definition</td>
<td>288</td>
</tr>
<tr>
<td>Eye-tracker</td>
<td>9–64</td>
</tr>
<tr>
<td>head-mounted</td>
<td>53–55</td>
</tr>
<tr>
<td>parallax</td>
<td>60–61</td>
</tr>
<tr>
<td>latency</td>
<td>43–44</td>
</tr>
<tr>
<td>remote</td>
<td>51–53</td>
</tr>
<tr>
<td>tower-mounted</td>
<td>51–53</td>
</tr>
<tr>
<td>types and properties</td>
<td>51–64</td>
</tr>
<tr>
<td>Eye-tracking competences</td>
<td></td>
</tr>
<tr>
<td>data analysis</td>
<td>145–168</td>
</tr>
<tr>
<td>data recording</td>
<td>110–145</td>
</tr>
<tr>
<td>experimental design</td>
<td>65–109</td>
</tr>
<tr>
<td>hardware</td>
<td>9–64</td>
</tr>
<tr>
<td>events and representations</td>
<td>145–298</td>
</tr>
<tr>
<td>Term</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
</tr>
<tr>
<td>AIO-based</td>
<td>187–230</td>
</tr>
<tr>
<td>attention map-based</td>
<td>231–232</td>
</tr>
<tr>
<td>auxiliary data</td>
<td>286–298</td>
</tr>
<tr>
<td>oculomotor</td>
<td>147–186</td>
</tr>
<tr>
<td>scanpath-based</td>
<td>253–285</td>
</tr>
<tr>
<td>measures</td>
<td>299–468</td>
</tr>
<tr>
<td>counting</td>
<td>399–427</td>
</tr>
<tr>
<td>latency and distance</td>
<td>428–453</td>
</tr>
<tr>
<td>model</td>
<td>454–468</td>
</tr>
<tr>
<td>movement</td>
<td>301–385</td>
</tr>
<tr>
<td>position</td>
<td>356–398</td>
</tr>
<tr>
<td>Ilyelink</td>
<td></td>
</tr>
<tr>
<td>acceleration threshold</td>
<td>158</td>
</tr>
<tr>
<td>blink</td>
<td>176</td>
</tr>
<tr>
<td>drift correction</td>
<td>225</td>
</tr>
<tr>
<td>event detection</td>
<td>148</td>
</tr>
<tr>
<td>dialogue</td>
<td></td>
</tr>
<tr>
<td>principle</td>
<td>153</td>
</tr>
<tr>
<td>settings</td>
<td>156</td>
</tr>
<tr>
<td>eye image</td>
<td>116</td>
</tr>
<tr>
<td>glissade</td>
<td>166</td>
</tr>
<tr>
<td>model I and II, 250/500 Hz, 56</td>
<td></td>
</tr>
<tr>
<td>parser</td>
<td>175</td>
</tr>
<tr>
<td>smooth pursuit</td>
<td>169</td>
</tr>
<tr>
<td>tower-mounted model, 1000 Hz, 51</td>
<td></td>
</tr>
<tr>
<td>faceLAB</td>
<td>see Seeing Machines</td>
</tr>
<tr>
<td>False negatives</td>
<td>72–73, 86</td>
</tr>
<tr>
<td>False positives</td>
<td>72–73, 86</td>
</tr>
<tr>
<td>Fatigue effects</td>
<td></td>
</tr>
<tr>
<td>blink amplitude</td>
<td>320</td>
</tr>
<tr>
<td>blink duration</td>
<td>324</td>
</tr>
<tr>
<td>EPRP</td>
<td>99</td>
</tr>
<tr>
<td>pupil diameter</td>
<td>394</td>
</tr>
<tr>
<td>saccadic duration</td>
<td>322</td>
</tr>
<tr>
<td>saccadic gain</td>
<td>453</td>
</tr>
<tr>
<td>saccadic latency</td>
<td>432</td>
</tr>
<tr>
<td>saccadic rate</td>
<td>405</td>
</tr>
<tr>
<td>saccadic velocity</td>
<td>328</td>
</tr>
<tr>
<td>Feature analysis</td>
<td>64, 215–216</td>
</tr>
<tr>
<td>Feature-based tracking</td>
<td>26</td>
</tr>
<tr>
<td>Filtering</td>
<td>47–49</td>
</tr>
<tr>
<td>short, noisy ‘fixations’</td>
<td>158</td>
</tr>
<tr>
<td>First entries string</td>
<td>193</td>
</tr>
<tr>
<td>First fixation duration</td>
<td></td>
</tr>
<tr>
<td>after onset</td>
<td>384</td>
</tr>
<tr>
<td>distributed AOI</td>
<td>212</td>
</tr>
<tr>
<td>effect of false glissadic fixations</td>
<td>165</td>
</tr>
<tr>
<td>in an AOI</td>
<td>385–386</td>
</tr>
<tr>
<td>First pass dwell time</td>
<td>389–390</td>
</tr>
<tr>
<td>First skip</td>
<td>191</td>
</tr>
<tr>
<td>Fishing trip</td>
<td>67</td>
</tr>
<tr>
<td>heat map</td>
<td>240</td>
</tr>
<tr>
<td>multiple comparisons problem</td>
<td>94</td>
</tr>
<tr>
<td>Fixation</td>
<td>22</td>
</tr>
<tr>
<td>ambiguous</td>
<td>378</td>
</tr>
<tr>
<td>attention</td>
<td>378–381</td>
</tr>
<tr>
<td>cognitive versus oculomotor detection</td>
<td>150</td>
</tr>
<tr>
<td>algorithmic</td>
<td>171–175</td>
</tr>
<tr>
<td>manual</td>
<td>175–176</td>
</tr>
<tr>
<td>minimal fixation duration</td>
<td>155</td>
</tr>
<tr>
<td>principle</td>
<td>152</td>
</tr>
<tr>
<td>dispersion-based detection</td>
<td>171</td>
</tr>
<tr>
<td>effect of dispersion setting</td>
<td>159</td>
</tr>
<tr>
<td>effect of velocity setting</td>
<td>159</td>
</tr>
<tr>
<td>false, 162</td>
<td></td>
</tr>
<tr>
<td>with 1–10 ms duration</td>
<td>164</td>
</tr>
<tr>
<td>in-head versus on-stimulus</td>
<td>150</td>
</tr>
<tr>
<td>lost in event detection</td>
<td>149, 157</td>
</tr>
<tr>
<td>number of</td>
<td>412–415</td>
</tr>
<tr>
<td>progressive</td>
<td>378</td>
</tr>
<tr>
<td>proportion</td>
<td>415–416</td>
</tr>
<tr>
<td>rate, 416</td>
<td></td>
</tr>
<tr>
<td>regressive</td>
<td>378</td>
</tr>
<tr>
<td>stability</td>
<td>361, 366</td>
</tr>
<tr>
<td>vector, 305</td>
<td></td>
</tr>
<tr>
<td>velocity-based detection algorithm</td>
<td>171–172</td>
</tr>
<tr>
<td>versus slow pursuit</td>
<td>179</td>
</tr>
<tr>
<td>Fixation counting</td>
<td>412–415</td>
</tr>
<tr>
<td>Fixation density</td>
<td>359</td>
</tr>
<tr>
<td>Fixation dispersion</td>
<td>359</td>
</tr>
<tr>
<td>Fixation duration</td>
<td>377–386</td>
</tr>
<tr>
<td>close to blink</td>
<td>176</td>
</tr>
<tr>
<td>cognitive processing</td>
<td>378</td>
</tr>
<tr>
<td>definitions</td>
<td>377</td>
</tr>
<tr>
<td>exceptions</td>
<td>382–383</td>
</tr>
<tr>
<td>functional visual field</td>
<td>381</td>
</tr>
<tr>
<td>glissades</td>
<td>380</td>
</tr>
<tr>
<td>idiosyncracy</td>
<td>378</td>
</tr>
<tr>
<td>position on monitor</td>
<td>170</td>
</tr>
<tr>
<td>saccadic suppression</td>
<td>379–380</td>
</tr>
<tr>
<td>sampling frequency</td>
<td>31–32</td>
</tr>
<tr>
<td>skewness of distribution</td>
<td>384</td>
</tr>
<tr>
<td>smooth pursuit</td>
<td>168</td>
</tr>
<tr>
<td>values, interpretation</td>
<td>381–383</td>
</tr>
<tr>
<td>Fixation map, see Attention map</td>
<td></td>
</tr>
<tr>
<td>Fluorescent light</td>
<td>19</td>
</tr>
<tr>
<td>fMRI, see Functional magnetic resonance imaging</td>
<td></td>
</tr>
<tr>
<td>Fourth Purkinje reflection</td>
<td>126</td>
</tr>
<tr>
<td>Fovea, 21</td>
<td></td>
</tr>
<tr>
<td>Foveal mask</td>
<td>50</td>
</tr>
<tr>
<td>Poveation, 250–251</td>
<td></td>
</tr>
<tr>
<td>eye movement modelling examples, 252</td>
<td></td>
</tr>
<tr>
<td>gaze contingent</td>
<td>252</td>
</tr>
<tr>
<td>Functional magnetic resonance imaging, 135</td>
<td></td>
</tr>
<tr>
<td>co-analysis</td>
<td>288</td>
</tr>
<tr>
<td>method, 99</td>
<td></td>
</tr>
<tr>
<td>Functional visual field, 381</td>
<td></td>
</tr>
<tr>
<td>Fuzzy AOs.</td>
<td>212–213</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>saccadic, 452–453</td>
<td></td>
</tr>
<tr>
<td>smooth pursuit, 450–451</td>
<td></td>
</tr>
<tr>
<td>Galvanic skin response</td>
<td></td>
</tr>
<tr>
<td>method, 97</td>
<td></td>
</tr>
<tr>
<td>non-interference</td>
<td>135</td>
</tr>
<tr>
<td>Gamma distribution</td>
<td>88</td>
</tr>
<tr>
<td>Gaussian</td>
<td></td>
</tr>
<tr>
<td>mathematical definition, 245</td>
<td></td>
</tr>
<tr>
<td>metaphor, 245</td>
<td></td>
</tr>
<tr>
<td>Gaze angles</td>
<td>58</td>
</tr>
<tr>
<td>Gaze aversion</td>
<td>397</td>
</tr>
<tr>
<td>Gaze cascade</td>
<td></td>
</tr>
</tbody>
</table>
Inhibition
anti-saccades, 305
microsaccade, 407
of return, 264, 282
Instruction
experimental design, 77–79
pre-arrival
cover story, 79
mascara, 119–120
pre-recording, 134
retrospective think-aloud, 105–108
Instruction effects
gaze position, 397
saccadic curvature, 337
saccadic latency, 432
Integration between modalities
transition rate, 425
Integration over several words
dwell time, 388
Inter-microsaccadic interval, 183, 358–359, 376–377
Interactive Minds, 12–16
Interblink interval, 410–412
Interference
fMRI, EEG, motion tracking, 135–137
fMRI, TMS, 114
verbal data, 137–138
Interval scale, 90
Jensen-Shannon divergence, 368
Jerk, 151, 332
saccadic, 335
square-wave, see square-wave jerk
Kullback-Leibler Distance, 368–369, 376
Laboratory, 17–21
cubicles, 17
effect on participant, 115
physical space, 17
types of, 17–21
Landmark position, 358–359
optimal viewing position, 358
preferred viewing location, 358
Latency, 97
alignment of data sources, 286
auxiliary data, 288–290
eye-tracker, 43–47
GSR, 97
measures, 428–453
stimulus synchronisation, 45–47, 83
temporal precision, 44–45
variable, 45, 46
video stimuli, 46
LC Technology, 13, 31
Leading saccade, 179
Learning effect, 82
Levenshtein distance, 275–276, 348–353
refinements, 353–354
Lexical activation effects
first fixation duration, 385
first pass dwell time, 390
number of regression, 425
Light effects
pupil dilation latency, 435
Lights-out technique, 443
Likert scale, 96–97
Limbic-tracking, 28
Local versus global, 265–266
log-transform, 88
Logistic regression, 92
logit transform, 88
Loglinear analysis, 93
Look-ahead, 265
eye-hand span, 446
number of, 427
Luminance map, 234, 235
Lying, effect on pupil diameter, 394
Main sequence, 316–317
inflection point, 316–317
Mannan similarity index, 370–371
Manual coding
dwells, 227–229
fixations, 175–176
scene paths, 257
Manufacturers, 12–16
openness, 15
support, 15
Markov model
event detection, 174
orders, 196
reading detection, 268
transition matrices, 195–197
Mascara, 119–120
Measure, 3–4, 299–468
classification, 463–465
complex, 75
concept, 456–460
construction of more, 465–468
definition, 458–460
input representation, 3
model of, 458–463
number of, 454–456
operational definitions, 4, 456–460
pair versus group comparisons, 460
processing stages, 458
selection, 75–77
summary box, 3
target question, 3
taxonomic structures, 463–465
terminology of, 4–5
uniqueness, 461
usage of, 4
usefulness, 461
validity and reliability, 76, 461–463
variable type, 3
Melancholia effects
saccadic velocity, 329
Memory effects
number of fixations, 423
Mental imagery effects
global-local ratio, 339
saccadic amplitude, 313
INDEX

string edit distance, 349
Metaphorical status effects
 first fixation duration, 385
Methodological triangulation, 95–108, 286–297
Microsaccade
detection algorithm, 182
 figure, 182
inhibition, 407
introduction, 23
precision, 35
pupil-only recording, 39
sampling frequency, 33
 versus square-wave jerk, 184
Microrasacadic
amplitude, 317–318
direction, 308–309
main sequence, 317
rate, 406–407
Miles test, 119
Mirror
eye camera set-up, 117
fMRI eye-tracker, 136
hardware, 51–56
orientation, 127
Model-based eye-tracking, 27–29
Monitor size
calibration, 129
Monitor size effects
saccadic amplitude distribution, 316
Morphological complexity effects
 first fixation duration, 385
 number of fixations, 414
Motion tracking
collinearity, 289
interference, 126, 137
method, 98
Moving window, 50, 181, 310, 410
Multilevel modelling, 93
Multinomial score sheet, 259, 290
Multiple
eye cameras, 53, 59
IR diode modes, 25
Multiple comparisons problem, 94
Nearest neighbour index, 363–364
Neutelmann-Wunsch algorithm, 276, 353
Nicotine effects
antisaccades, 306
saccadic latency, 432
smooth pursuit gain, 451
square-wave jerk rate, 408
Noise, 34
 blinks as, 181
detection, 181–182
environmental, 35
 glissades as, 165
impulse, 47
oculomotor, 34
ramp, 47
 reduction, 47–49
system-inherent, 33
Nominal scale, 90
 Nonparametric test, 91
Number of
 backtracks, 427
dwell, 417–418
fixations, 412–415
look-aheads, 427
participants, 419–421
 experimental design, 85–87
 heat map, 243–244
regressions
 in and between areas of interest, 425–426
 out of and into an area of interest, 426
returns, 423–424
saccades, 404
subscans, 342–343
 transitions, 422–423
too small AOsI, 224
trials, 419–421
Numerical differentiation, 48
NYAN
 heat map dialogue, 232
Nyquist–Shannon sampling theorem, 30
Obesity effects
gaze position, 395
Ocular dominance
 Miles test, 119
 Ocular flutter, 184
Oculomotor events
detection, 147–186
overview, 23
Oculomotor noise, 34
Offset
 AOsI, 224
camera and infrared position, 134
corner calibration, 132
definition, 33
 incandescant light, 126
 optic artefact, 124
 repair, 225
OGAMA
 heat map dialogue, 232
Operationalization
definition, 456–458
dependent variables, 74
from theory, 87
from traditions and paradigms, 68–71
of research idea, 66
 versus measure concept, 456–460
Optic artefact, 124
definition, 34
detection principle, 152
false saccades, 164
false short fixations, 164
filter, 47
mascara, 120
velocity plot, 163
velocity threshold, 181
Order effect, 82
Order of AOsI entries, 339–341
Orthography effects
 first fixation duration, 385
Out of context effects
entry time, 438
Outliers, 88, 261

Pain effects
pupil diameter, 394
pupil dilation latency, 435
Paradigm, 68
antisaccade, 305-307
others, 70
reading research, 69
scene perception, 70
usability, 70
visual search, 69
visual world, 199-203
Parallax
calibration, 133
error, 60-61
Parametric test, 91
Parasympathetic function effects
pupil velocity, 331
Participant
droopy eyelids, 120-122
ethics, 115
eyelashes, 120, 131
inconvenience allowance, 140
lenses, 124-125
mascara, 119-120
reception, 115
recruitment, 115
sample size, 85-87
variation, 83-85, 115
Perceptual span, 381
Phobia effects
gaze position, 395
Physiological nystagmus, see tremor
Pickup time, see Recovery time
Pilot
recording, 114
study, 86
Pixels versus visual degrees, 23
Plane, 208
Polysemy effects
first fixation duration, 385
Position dispersion, 359-369
measure comparison, 359-360
Position measures, 356-398
Position similarity, 370-376
Post-saccadic drift
versus glissade, 183
Power, 86
Precision, 34-41
artificial eyes, 36
binocular averaging, 38, 60
bite bars, 39
calculation, 35
calculation of, 34-35
disparity measure, 449
downsampling, 38
environmental noise, 35, 40
event detection, 155, 157, 161
eye colour, 38
eye-tracker build quality, 37
factors, 41
false fixations, 162
filtering, 39, 47-49
fuzzy AOIs, 212-213
gaze-contingence, 35
heat map, 247
human eyes, 37
input to event detection, 149
microsaccades, 33
position of participant, 38, 39
pupil-only recording, 39
resolution of eye-camera, 37
sampling frequency, 38
sub-pixel estimation, 39
types of eye-trackers, 40
typical precision, 37
variable, 162
variable and event detection, 161
velocity threshold, 157, 181
vibrations, 40
Preference for exploration effects
entropy, 342
Primates
main sequence, 317
remote eye-tracking, 57
saccadic latency, 430
Probability density function, 248, 365, 368
Processing
initial, 385
Processing effects
eye-hand span, 445
first fixation duration, 384
fixation duration, 381
fixation duration distribution skewness, 384
speech production, 444
Progressive lenses
effect on reading, 415
Proportion of
dwells, 418
fixations, 415-416
glissades, 405-406
participants, 419-421
saccades, 404
trials, 419-421
Proportion over time, 440
graph
calculation from scarf plot data, 198, 203
statistics, 440-441
time-locking hypothesis, 199-203
strings, 204
transitions, 204
Prosopagnosia effects
order of AOI entries, 341
Psychoticism effects
blink rate, 411
Pupil, 21
blink detection, 177
dark versus bright, 25
diameter, 391-394
dilation latency, 434-435
dilation velocity, 331
ellipsoid model, 28
Pupil-only recording, 39
Purkinje reflection
1st, see corneal reflection
4th, 126
all four, 22

Questionnaire, 96–97

Raindrop analysis, 5
Randomisation, 82
Range, 362–363
Rate of
back-up saccade, 408–409
blinks, 410–412
catch-up saccade, 408–409
dwells, 419
fixations, 416
microsaccades, 406–407
regression, 426
saccades, 404–405
smooth pursuit, 408–409
square-wave jerk, 407–408
transitions, 424–425

Ratio scale, 90
Reaction time, 97
manual, 97
visual, 428–447
Reading
detection, 267–268
direction, 214
transfer, 304
versus scanning, 267–268
Reading depth, 390–391
Reading speed, 330
Recording
start, 134

Recovery time, 29, 53
Region of interest (ROI), see Area of Interest
Regression, 93
events, 263–264
in-word versus between-word, 264
number of, 425–426
rate, 426
scans, 264

Reliability, 76, 661–663
Remote eye-tracker, 51–53
Repeating viewings effects
string edit distance, 349

Repetition effects
eye–hand span, 446

Representation, 2
(x,y,r) sequence, 274
amplitude and direction string, 270
attention maps sequence, 272–273
dwell map, 192
fixation and dwell string, 269–270
Gaussian landscape, 233–248
gridded AOF, 212, 233
probability density function, 248
proportion over time graph, 198–205
scarf plot, 197–198
sequence chart, 197–198
string, 193
transition matrix, 193–197
vector sequences, 271–272
Research tradition, 68
Restricted scanpath, 261
Retina, 21
Retinal reflection, 25, 127
Retrospective think-aloud, 104–108
analysis, 290–296
instruction, 106–108
prompting, 107
training, 106
Return, 191
inhibition of, 264
number of, 423–424
time, 442
RMS, see Root mean square
Robustness, 57
Rods, 21
Root mean square
definition of precision, 35
position variance, 360–362

Saccade
anti-, 305–307
back-up, 179
binocular in velocity plot, 170
catch-up, 179
number of, 404
detecting versus measuring, 174
detection principle, 152
express, 431
false, 164
idealized, 151
introduction, 23
leading, 179
number of, 404
proportion of, 404
velocity-based detection algorithm, 172

Saccadic
acceleration, 332–333
sampling frequency, 32
threshold, 152
accuracy, 452–453
of upcoming saccades, 307
adaptation effects
saccadic amplitude, 314
amplitude, 312–315
blink rate, 411
position on monitor, 170
skewness of distribution, 315–316
amplitude and direction based strings, 270
blindness, 321–322
counting, 403–405
curvature, 336–337
direction, 302–304
saccadic curvature, 336
duration, 321–322
extent, 363
intrusion, 183
jerk, 335
latency, 430–432
magnitude, 312
main sequence, 317
orientation, 302–304
proportion, 404
rate, 404–405
size, 312
skewness, 333–335
suppression, 379–380
transition time, 321–322
velocity, 326–329
average, 328, 330
peak, 328
sampling frequency, 32
threshold, 152
time-to-peak, 328
velocity profile
skewness, 333–335
Saccadic extent, 359
Saccadic eye-movement-related-potentials, 99
Saliency map, 347, 376
Sampling error (statistics), 91
Sampling frequency, 29–33
event detection, 167–168
fixation durations, 31–32
gaze contingency, 33
glissade, 167
heat map, 247
microsaccades, 33
precision, 38
saccade detection, 174
saccadic velocity, 32
Scanpath, 253–285
ambient versus focal subsans, 266–267
as amplitude and direction string, 270
as an (x,y,t) sequence, 274
as attention map, 272–273
as fixation and dwell string, 269–270
as string, 269–272
as vector sequence, 271–272, 349–350, 354–355
averaged, 282–283
backtrack, 262
cognitive processes, 279
correlation, 273–278
challenges, 283
measures, 346–355
pairwise versus groupwise, 278
similarity calculation, 274
compression, 274
data quality checks, 257
definition, 253–255
direction, 310–311
duration, 323–324
function, 254
hyperscanning, 261
in-word versus between-word regression, 264
inhibition of return, 264–265, 282
length, 310–320
versus number of fixations, 261
local versus global, 265, 338–339
look-ahead, 265
look-back, 264

number of subsans, 342–343
planning, 197, 281–282
publication, 259–262
reading versus scanning, 267–268
regression events, 263–264
regression scanpath, 264
representation, 255, 268–273
restricted, 261
saccade versus fixation ratio, 266
sequence alignment, 274–277
simplification, 274
string edit distance, 348–349, 351–353
sweep, 267
theatory, 280–281
unique AOIs, 343–344
usage of visualizations, 256
velocity, 330
versus heat map, 239
visualization, 254
Scaffold plot, 197
Scene camera, 55
Schizophrenia effects
gaze position, 395
number of saccades, 404
RMS, 451
saccadic duration, 322
scanpath length, 320
smooth pursuit gain, 451
smooth pursuit latency, 433
smooth pursuit velocity, 330
smoothness of pursuit, 338
Search
efficiency, 341
number of fixations, 413
strategy, 311
task difficulty
saccadic amplitude, 313
Sedation effects
blink duration, 325
Seeing Machines, 13
event detection principle, 153
Sequence alignment, 274–277
comparison matrix, 276
local versus global, 275
string based measures, 348–354
substitution matrix, 275
vector based measures, 354–355
Sequence chart, 197
Sequence correlation, 346–347
SERp, see saccadic eye-movement-related potentials
Settings
acceleration threshold, 156
artefact-removal threshold, 158
colour mapping, 234
dispersion threshold, 151, 155
fixation dispersion, 155
heat maps, 232
minimal fixation duration, 151, 155, 156
sigma square (\(\sigma^2 \)), 245–266
velocity threshold, 152, 157, 181, 184
Settings dialogue
event detection, 148
heat map, 236
Sexuality effects
gaze position, 395
number of fixations, 415
Simulated scatoma, 50
Sinnbild, 5
Situation awareness effects
dwell time, 388
Skewness, 85–89, 316
acceleration, 333
dwell time, 387
fixation durations, 384
microsaccades, 318
of Voronoi cell distribution, 366
saccadic amplitude, 315–316
saccadic velocity profile, 333–335
Skipping, 191–192
proportion
words, other AOsIs, and participants, 419–420
Skipping rate, 419
SmartBye, 13, 53, 125
SMI, 12–16
and DAREL, 135
BetGaze
default dispersion setting, 155
dynamic AOsIs, 209
event detection dialogue, 148
event detection principle, 153
heat map calculation, 245
heat map dialogue, 232
smooth pursuit, 189
word AOsIs, 218
model RED, 34
model HiSpeed 1250, 51
model RED 4, 50 Hz, 52
Polhemus headtracking, 54
velocity algorithm, 173
Smooth pursuit
acceleration, 335
detection, 178–181
Kalman filter, 180
principal component analysis, 181
Rayleigh test, 180
direction, 309–310, 451
dispersion algorithm, 168
effect on dispersion versus velocity algorithms, 168
gain, 450–451
introduction, 23
latency, 432–433
length, 319
phase lag, 451–452
phase shift, 451–452
smoothness, 338
tolerance for position error
saccadic amplitude, 315
velocity, 329–330
Social phobia effects
scapath length, 320
Software
analysis, 141–143
recording, 116
stimulus, 112–113
update cycles, 15
Spatial accuracy, 41–43
Spectacles, see glasses
Speech AOI, 290
Speech planning effects
look-ahead direction, 307
Split attention effects
saccadic latency, 431
Square-wave jerk
detection methods, 184
figure, 183
rate, 407–408
versus microsaccade, 184
Squint, see Disparity
SR Research, 12–16
Standardization, 3, 15, 455
Statistic
verbal data, 295
Statistical distribution, 88
Statistical transformation, 88
Statistics, 87–95
analysis software, 142
d as dispersion measures, 360
circular, 302, 336
count data, 403
measure selection, 77
pair versus group comparisons, 460
position similarity, 356–357
power, 85–87
proportion over time, 440–441
sampling frequency, 30–32
scanpath comparisons, 278
transition matrix, 344–346
trial-by-trial effects, 306
verbal data, 296
versus visualization, 261
Stimulus
animated, 63
automated AOsIs, 218
building the recording environment, 113–114
experimental design, 79–81
gaze position, 397
geometry, 129
preparation, 111–113
semantic composition, 217
software, 112–113
type effects
entry time, 438
fixation duration distribution skewness, 384
saccadic latency, 431
smooth pursuit latency, 433
velocity effects
catch-up saccadic rate, 409
video, 46, 209
Stimulus orientation
saccadic direction, 303
String, 193–195, 269–270
alignment, 206, 274–277
compressed, 193, 270, 274
gridded AOI, 212
of vectors, 271–272, 349–350
proportion over time, 204–205
representation of scanpaths, 269–272
unique AOIs, 343–344
String edit distance, 348–353
refinements, 353–354
Structural zeros, 194
Sub-pixel estimation, 27, 39
Sunlight, 19, 125
Superior colliculus
saccadic curvature, 337
Support line, 15
Survival function, 198
Sweep, 267
Synchrotronization, 82–83, 112, 286–290
System inherent noise, 33–36
T50, 438–439
Task, 77–79
Task effects
eye–hand span, 446
fixation rate, 416
gaze position, 396
global–local ratio, 339
look–ahead direction, 307
saccadic amplitude distribution, 316
saccadic velocity, 329
Tea making
eye–hand span, 446
Technical maintenance, 20
Technological transparency, 15
Tempo effects
eye–hand span, 446
Temporal precision, 44
terminology, 4–5
time
binned, 205–206
ordinal, 206
Time of day effects
blink rate, 411
time on task effects
fixation rate, 416
saccadic duration, 322
time to comprehend
entry time, 438
time to first fixation, 437–438
time–locking hypothesis, 199–203
Tobii, 13–16
clearview
event detection dialogue, 148
recommendations, 155
settings, 172
event detection principle, 153
eye images, 116
fixation filter, 167
settings, 174
smooth pursuit, 169
glasses, 54
model 1750, 52
model T120, 25
studio
clustered AOIs, 219
heat map calculation, 245
heat map dialogue, 232
Total dwell time, 389
Total skip, 192
tower mounted eye-tracker, 51–53
tracking range, 58–59
calibration, 130–132
trans-cranial magnetic stimulation
saccadic latency, 432
Transition, 190–191
counting, 422–425
matrix, 193–197
number of, 422
versus dwell time, 196
proportion over time, 204–205
rate, 424–425
Transition matrix, 193–197
density, 341
entropy, 345–346
multidimensional, 194
statistics, 344–346
strings, 194
structural zeros, 194
versus dwell time, 196
texture
introduction, 23
sampling frequency, 30
Trial, 81–83
alignment, 206
borders cutting events, 384
by-trial effects, 306
covarying confounds, 74
counting, 402, 421
distractor, 79
distribution of data, 83
divided into bins, 206
duration
ANOVA on dwell time, 357
error, 46
scaling microsaccade rate, 406
multiple comparisons problem, 94
stimulus preparation, 111–113
variable durations, 97, 198, 320, 404
tunnel vision, 395
type I error, 86
type II error, 86
typical precision
definition, 34
measurement, 37
unique AOIs, 343–344
user interface evaluation
convex hull area, 364
cumulative transition time, 323
dwell time, 388
entry time, 438
eye–mouse distance, 449
fixation duration, 383
heat map, 240–241
number of backtracks, 427
number of dwells, 417
number of fixations, 413
number of transitions, 423
proportion of participants, 420
INDEX

scanpath length, 320
scanpath velocity, 330
string edit distance, 349

Validity, 76, 461–463
data sample, 178
varieties, and eye-tracking measures, 463

Variable latency, 45

Velocity
algorithm principle, 153
pseudo-code, 173
sampling frequency, 168
average, 328
filter, 48–49
operational definition, 326
over-time diagram, 48, 157, 162–164, 166–170, 326, 400
peak, 328
pupil dilation, 331
reading, 330
saccadic, 326–329
scanpath, 330
smooth pursuit, 329–330
tangential, 326
threshold, 157
data driven, 161
effect of setting, 160
fixation detection, 172
optic artefact, 181
precision, 162, 163, 181
settings, 149, 158
time-to-peak, 328

Verbal data
analysis, 290–296
coding and scoring, 293–296
experimental design, 99–108
forms of, 101
individual differences, 101
interference, 138
recording, 137–139
speech AOI, 290
transcription, 292

Verbal retrospection
data quality, 138
dynamic visualization, 139
instruction, 139
static visualization, 138

Vergence, 24
Versatility, 57
Vibrations, 40

Vigilance, 383
glissicic proportion, 405
saccadic velocity, 328

Vigilance effects
blink duration, 324

Visibility effects
eye–hand span, 446

Visual degrees
versus pixels, 23

Visual field, functional, 381, 395

expertise, 396
Visual field, useful, 381
Visual illusion effects
microsaccade rate, 407
Visual imagery effects
saccadic rate, 405
Visual processing
before speech, 443
Visual span, 381
Visual strategies
counteracting, 82
Visual world paradigm, 199–203
Voronoi cell distribution, 366

Weighted search area, 368
Whiplash effects
antisaccades, 307
Whitespace, 206
Within-subjects design, 83–86

Word
frequency effect
first fixation duration, 385
frequency effects
number of fixations, 414
skipping proportion, 420
integration effects
go-past duration, 324
length effects
skipping proportion, 420
Working memory
inhibition of return, 282
look-back, 265
Working memory effects
antisaccades, 307
eye–hand span, 447
eye–mouse distance, 449
go-past duration, 324
number of returns, 424
preview
entry time, 438
return time, 442
transition rate, 424
visual, 314
number of fixations, 415

Workload effects
blink amplitude, 320
blink duration, 325
blink rate, 411
fixation rate, 416
GSR, 97
mental
eye–hand span, 447
fixation duration, 383
fixation duration distribution skewness, 384
functional visual field, 381
pupil diameter, 393
range, 363
pupil dilation latency, 435
saccadic amplitude, 314
saccadic rate, 405
speech planning
gaze position, 397
visual
- nearest neighbour index, 364
- overall fixation vector, 305