UNIVERSITY OF TWENTE.

Symposium at the ORD: 9-6-2011
Introduction and background

- PROO Literature Review: *Examining Research & Development (R&D) in Education*

- Three main forms of R&D distinguished:
 - Design research;
 - Teacher communities; and
 - Research, development, diffusion (RDD)

- Focus: Characteristics and outputs of integrated R&D
Shared analysis framework

- Characteristics of 3 forms of R&D (teacher communities; design research; or rdd), with attention to:
 - Participants involved (e.g. practitioners, intermediaries or researchers);
 - Knowledge used to inform design and development
 - Outputs (e.g. new knowledge, practical contributions)
Methodology

- Search Scopus, WoK and ERIC per model
- Abstract screening: education, R&D, participants, empiricism
- Full text screening: R&D link
- Analysis

Notes:
- Search terms related to ‘R&D models’
- Time span 2008/2009: yield vs. pragmatics
- Research journals as source of information
- Only explicit R&D link
Design research – framework

- Dual goal:
 - Knowledge production
 - Practical solution

- Process characteristics:
 - Interventionist: to improve teaching practice
 - Iterative: multiple cycles of research, development, testing and revision
 - Collaborative: researchers and practitioners involved
Design research – project descriptions

<table>
<thead>
<tr>
<th>Country:</th>
<th>USA (10), China (2), Canada, France, Netherlands, Norway, Singapore, UK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target:</td>
<td>Primary (7), secondary (3), tertiary (6), professional development (2)</td>
</tr>
<tr>
<td>Content area:</td>
<td>Science (7), math (3), computer science (2), health, language, teaching, history, management</td>
</tr>
</tbody>
</table>
Design research – participants

<table>
<thead>
<tr>
<th></th>
<th>Teach</th>
<th>Research</th>
<th>Develop</th>
<th>Facilitate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teacher</td>
<td>• All</td>
<td>• All tertiary-level</td>
<td>• Nearly all: topic, activities, ideas for redesign</td>
<td>• one, within same faculty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Only three other (limited)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Researcher</td>
<td>• (Unless tertiary-level teacher)</td>
<td>• All</td>
<td>• All</td>
<td>• 2 teachers professional development programs</td>
</tr>
<tr>
<td>Developer</td>
<td></td>
<td></td>
<td>• 2: online environment; math module for upscaling</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>• Doctoral students</td>
<td>• Students: choice of topic</td>
<td>• Others (n.s.): learning environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design research – knowledge base

- Development based upon (reported):
 - Literature (11)
 - Usually: ‘adapted’, but hardly specified how
 - project data (15)
 - practical knowledge (6)
 - 6: one knowledge source
 - 2: all three
Design research - knowledge production

- Public knowledge
 - Empirical data (18): user experiences, learning gains, teaching and learning practices.
 - Procedural/declarative (9): design changes and rationales
 - Generalizations (9): principles, theory, lessons learned
- Private knowledge (1): what the participants learned
- Dissemination:
 - Journals, thesis (12)
 - Project website (3), meetings & conferences (3)
Design research – Conclusions

- Large variety in topics and level
 - Usually up to 5 teachers, up to 3 researchers

- Teachers and researchers: designing collaboratively
 - Few professional developers involved
 - Teacher-researchers: in tertiary education
 - Other teachers: little involvement in knowledge construction & dissemination

- Little room for detailing design choices, changes and theory
UNIVERSITY OF TWENTE.

TEACHER COMMUNITIES
Teacher communities – Framework

- TC as an *overarching concept* (PLC, inquiry communities, CoP, action research)

- Two generic goals:
 - *Improve practice* (and hence student learning)
 - *Professional development* (use/share/generate knowledge)

- Underlying assumptions:
 - Teachers are “producers or mediators” of knowledge (Richardson, 1994)
 - R-P connections are not unidirectional, but reciprocal and intricate

- Various activities

UNIVERSITY OF TWENTE.
Teacher communities – Project descriptions

<table>
<thead>
<tr>
<th></th>
<th>Content-based professional development projects</th>
<th>Inquiry-based professional development projects</th>
<th>Action research projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal:</td>
<td>Support the implementation of an instructional framework</td>
<td>Engage teachers in systematic inquiry</td>
<td>Address a specific problem identified in teachers’ practice</td>
</tr>
<tr>
<td>Country:</td>
<td>USA / Canada</td>
<td>USA / Canada</td>
<td>Varied (Cyprus, New Zealand, Canada, Greece, Spain)</td>
</tr>
<tr>
<td>Target:</td>
<td>In-service Primary school teachers</td>
<td>In-service Secondary school teachers</td>
<td>(mostly) Primary school teachers</td>
</tr>
<tr>
<td>Content area:</td>
<td>Science / literacy</td>
<td>Maths/Science/Literacy</td>
<td>Inclusive education/maths/science</td>
</tr>
<tr>
<td>Number of TC involved:</td>
<td>More than one</td>
<td>More than one</td>
<td>One</td>
</tr>
</tbody>
</table>
Teacher communities – Participants

- **TEACHERS**
 - DESIGNER
 - LEARNER
 - RESEARCHER

- **UNIVERSITY RESEARCHERS**
 - RESEARCHER
 - DESIGNER OF PD
 - FACILITATOR

- **SCHOOL SUPPORT**
 - (E.g., science coordinator, resource teachers, principal, etc.)
 - FACILITATOR

- **CONTENT EXPERTS**
 - (E.g., science Ph.D. students, experienced teachers, etc.)
 - Teacher Educator / FACILITATOR

UNIVERSITY OF TWENTE.
Teacher communities – Knowledge base

FORMAL KNOWLEDGE
Design of instructional solutions
(e.g., Lessons, pedagogic strategies, materials)

KNOWLEDGE GENERATED THROUGH INQUIRY
(Classroom data)

PRACTICAL KNOWLEDGE
Teacher communities – Knowledge base

Orientation 1:

- Formal Knowledge
- Practical Knowledge

Orientation 2:

- Practical Knowledge
- Teacher Inquiry

UNIVERSITY OF TWENTE.
Teacher communities – Knowledge (re-)creation

- Nature of findings reported:
 - Case studies – Unit of analysis: individual teachers / community
 - (Mostly) University researchers’ perspectives on the TC
 - Findings tightly bound to the context and presented as “lessons learned”
 - Themes: contributions of PD or AR to teacher learning / practice

- Initiatives for dissemination outside the TC *(mostly in PD projects)*:
 - Academic circuit: scientific publications/ conferences
 - Professional circuit: school presentations / professional conferences
Teacher communities - Conclusions

- Nature of R-P connections revealed rich variations across projects.

- The facilitator role (adopted by university researchers or content experts) is central for strengthening R-P connections.

- The two orientations identified might be limited by the emphasis they give to teacher knowledge over teacher inquiry or vice-versa.

- (Surprisingly) the role of teachers as co-constructors of knowledge and theorizers is not discussed.
RESEARCH, DEVELOPMENT, DIFFUSION

UNIVERSITY OF TWENTE.
RDD – Framework

- **Research**
 - Aims at advancing knowledge.
 - Provides the basis for an innovation.

- **Development**
 - **Design**: Translation of research knowledge into an educational solution suitable for use.
 - **Evaluation/testing**: feasibility, generalizability, performance

- **Diffusion**
 - **Dissemination**: spread the innovation, create awareness
 - **Adoption**: trial, installation and institutionalization
RDD – Project descriptions

<table>
<thead>
<tr>
<th></th>
<th>Model/Guideline projects</th>
<th>Health promotion projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal:</td>
<td>Assist teachers in the design of instructional activities.</td>
<td>Prevent eating disorders / Promote physical activity</td>
</tr>
<tr>
<td>Country:</td>
<td>USA / Canada / Netherlands</td>
<td>USA / Netherlands / Germany</td>
</tr>
<tr>
<td>Target:</td>
<td>University programmes</td>
<td>Primary schools</td>
</tr>
<tr>
<td></td>
<td>High schools</td>
<td>Pre-schools</td>
</tr>
<tr>
<td>Content area:</td>
<td>Varies (Cartography, pediatric residency, mathematics)</td>
<td>Physical Education</td>
</tr>
</tbody>
</table>
RDD – Participants

RESEARCHERS
- **Co-design** the educational solution.
- **Assess** the quality, utility, feasibility and effectiveness of the educational solution.
- (Sometimes) Act as **trainers** or **facilitators**.

CONTENT SPECIALISTS
- Assist in the **design** process.
- Assist with **data collection**.
- Provide **advice** to teachers during implementation.

TEACHERS
- Contribute to the **design** process (feedback).
- **Implement** the educational solution designed by the project team.
- (Sometimes) Assist with **dissemination**.
RDD – Knowledge base informing design

<table>
<thead>
<tr>
<th>Educational Model/ Guidelines</th>
<th>Author</th>
<th>Sources informing the design of educational solutions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Research literature</td>
<td>Data from needs assessment</td>
</tr>
<tr>
<td>Balram & Dragicevic</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Kittredge et al.</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Stone, Alfed & Pearson</td>
<td>△</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Mooij</td>
<td>△</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevention/Health promotion program</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berger et al.</td>
<td>△</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>Jurg, et al.</td>
<td>△</td>
<td></td>
<td>△</td>
</tr>
<tr>
<td>Jansen et al.</td>
<td>△</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlson et al.</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
<tr>
<td>Williams et al.</td>
<td>△</td>
<td>△</td>
<td>△</td>
</tr>
</tbody>
</table>

△ Explicitly acknowledged influence in the design process • Highly probable influence in the design process
RDD – Adoption, implementation & dissemination

TEACHER OWNERSHIP
- Involvement in design activities (proactively or reactively)

PROFESSIONAL DEVELOPMENT
- Workshops, coaching, demonstration, exemplary materials

AWARENESS
- School meetings, newsletters, walking interventions
RDD – New knowledge production

- The nature of the findings reported varies depending on the *stage of the development process* (e.g., pilot implementation, effectiveness study, dissemination).

- Overall, findings are mainly concerned with the utility, adequacy and feasibility of the educational solution.

- (Usually) considerations about further dissemination and/or scaling up are addressed.
RDD – Conclusions

- Most projects were conceived from the mindset of working at scale.
- In most cases, multidisciplinary teams were involved in the development process.
- Projects spent (at least) 2 years in the development process.
- Data from needs assessments and pilot studies was usedformatively to refine the intervention.
GENERAL CONCLUSIONS
Conclusions

- **Participants: Multiple roles**
 - Teachers: (co-) designers, researchers, implementers...
 - Researchers: designers, teacher educators, facilitators...
 - Content experts / Specialists: (co-)designers, facilitators....
 - Multi-disciplinary teams strongest in RDD, then DR, then TCs

- **Knowledge informing design:**
 - almost all use (research) literature; most use project data; Many use practical expertise

- **New knowledge production:** primarily public in DR (but often also local); primarily local in TCs; mostly limited to effectiveness and conditions for dissemination in RDD
Thank you!

Now let’s hear what our discussants and audience have to say about all this…