Social Tools for Networked Learning: Current and Future Research Directions

Rory L.L. Sie, Adriana J. Berlanga, Kamakshi Rajagopal, Kees Pannekeet, Hendrik Drachsler, Soude Fazeli, Peter B. Sloep

Open Universiteit in the Netherlands, Centre for Learning Sciences and Technologies, Valkenburgerweg 177, 6419 AT Heerlen, The Netherlands.
rory.sie@ou.nl

Abstract
Whereas the Web 1.0 was mainly driven by static content and web pages linked by hyperlinks, the social web, or Web 2.0, has opened up new ways of connecting to not just resources, but also to people. The connections that are made through the use of Social Media, contribute to a complex, but also promising network of people and resources. In an educational context, this is called a learning network, and both learning networks by themselves and the Social media by which they are constructed require that we rethink the ways we learn, our view on learners, tutors and learning, and the way we support learners and tutors. Numerous opportunities have emerged with the introduction of social media for learning, but also numerous problems have emerged, ranging from awareness issues to (meta-)cognitive limitations and difficulties and affective and motivational problems.

This paper addresses the above issues by providing an overview of the current research we perform. The research we do is based on three themes: Peer support, Learner support and Online Learner Identity. Peer support describes the way peers may help each other through effective and efficient use of a learning network. It uses 1) natural language processing to, for instance, analyse communication between learners, 2) mine learner profiles to adapt to their individual circumstances and identity and 3) social network analysis extended by game theoretic solution concepts to recommend suitable peers for cooperative learning. Learner support focuses on how we may lead the learner through the jungle of learning resources. It uses recommender techniques to filter out unnecessary learning resources and provides concise sets of candidate resources for learning. Finally, Online Learner Identity focuses on rethinking how we construct our online identity, how to analyse such, and how to profit from the differences with offline learning. It may use multi-agent systems technology to simulate the identity of learners and their interaction in a learning network, but also semantic technology to capture the meaning of online learner identities.

The paper also describes the main techniques that we use in our research efforts to enhance networked learning. Furthermore, an overview of current projects within the themes is provided. We conclude that the results of our current research efforts will provide valuable insights to advance further on research and development of social tools for networked learning.

Keywords
Social Media, learning networks, social network analysis, recommender systems, data, multi-agent simulation, e-Learning 2.0.

Introduction
At the outset, the World Wide Web was mainly an information conduit, it allowed people to store and retrieve information. The web as an information storage device grew rapidly, and ever better search engines allowed people to find ever more accurately the information they were looking for. Soon, web users started to realise that the people behind the information were actually more interesting than the information itself. This marked the birth of the social web (as opposed to the information web) or Web 2.0 (as opposed to Web 1.0). Just as search engine technology drove the growth of the information web, the social web’s advent is driven by what
has become known as social software, roughly any software that supports group interaction. Examples are blogs and wikis but at a more technical level also web services and application programming interfaces. Importantly, it is the large and growing variety of social software tools that allows social media to flourish, also in the context of education. The central argument in favour of the integration of social media into learning experiences is that much learning is a social activity, one that occurs in interaction with others.

The online social interactions in the context of educational and how learners interconnect are best expressed by what are called Learning Networks. Learning Networks are on-line social networks through which users share knowledge with each other and jointly develop new knowledge. This way, Learning Networks may enrich the experience of formal, school-based learning and form a viable setting for professional development (Sloep & Berlanga, 2011). Although networked learning enjoys an increasing interest, many issues remain open on how nowadays lifelong learners are dealing with existing online social networks and tools, and how these could contribute on their learning.

A number of problems arise when people use the networked approach to assist them in their learning. First, a learner in a network may not be aware of all the resources that are available. Tools like Delicious and Evernote help organizing the information that you stumble upon, but this may not be everything that you are interested in. Indeed, some tools may recommend new resources, but there may be other resources (for learning), such as individuals that may teach you (tutors), or support you in learning, decision making or spreading information and knowledge (peer support). Particularly, the notion of one-to-one teaching may be solved by creating awareness of prospective tutors in your network.

Second, the above problem may be solved by creating more awareness, but doing so would merely create more, and possibly an abundance of choices. This may lead to information overload (De Choudhury et al., 2008), especially as the (two-mode) network the learners are in, grows. In the educational domain, similar research has identified so-called cognitive overload (Sweller, 1988).

Third, people may encounter decision making problems when they have to choose from a set of peers they can learn from. In networked innovation, for instance, people may have a difficulty choosing whom to cooperate with or learn from, due to their cognitive limitations. This phenomenon in decision making was coined by Herbert Simon as bounded rationality (Simon 1982; Selten, 1998; Colman, 2003).

Fourth, some connectivists may say all learning is conducted via others (Downes, 1998), and this poses another problem. If all learning takes place via others, then those others need to be willing to help you, and teach you. People are in principle self-interested (Kau and Rubin, 1979; Ratner and Miller, 2001), so why should they help someone other than themselves? It takes reciprocal action to have successful cooperation between people. For instance, early research on joint ventures shows that the stability of joint ventures relies on reciprocal acts (Kogut, 1989). In his seminal book, Robert Axelrod (Axelrod, 1984) showed that people are likely to do unto others as they do unto them (tit-for-tat), because this is the most profitable strategy. Thus, when you want to have successful cooperation between learners in a network, you need to motivate both the learner and the tutor. Defection on either side will result in non-optimal learning.

Fifth, through social media, the argument goes, the learner may be put in the centre of a social, and more personal and flexible learning process (Berlanga, Garcia Peñalvo, Sloep, 2010). However, eLearning 2.0, as the use of Web 2.0 for learning purposes is often called, poses a number of challenges (Sloep, 2011). Learners need to shift away from traditional, teacher-led learning strategies and from individual and non-participative approaches towards working collaboratively in social, situated contexts. And by extension, admitting that social media have the potential to foster these skills, it is also worthwhile to explore their potential for developing higher order skills, such as reflection on action, and critical thinking (Wopereis & Sloep, 2010). Also, learners will increasingly take responsibility over crucial instructional functions, as social media challenges the traditional university model of providing education and seeks to replace it with a flexible and open learning approach. The more personal learning environments that thus evolve provide a single access point to services,

1This is only true when people meet more than once, like in the iterated Prisoner’s Dilemma. For unique meetings, so-called one-shot games, the best strategy is to defect.

tools, people and resources, allowing learners much more control of their own learning processes (Bitter-Rijpkema & Verjans, 2011).

Finally, to improve the support we offer the learner in a networked learning environment, we need to evaluate and improve the algorithms that help that learner. To evaluate the algorithm, ideally we would need data about the activities that learners perform and evaluate the functioning of the algorithm against that data. But when we have this data at hand, it would be wise to share this with other researchers for them to test their algorithms on. Sharing both the data and the algorithms that use this data may even boost innovation in this area of research, as researchers will be able to improve each other’s algorithms. Initiatives such as the TREC (http://trec.nist.gov/), OAEI (http://oaei.ontologymatching.org/), and the NetFlix competition have proven to take their respective fields to a higher level. Hence, we think that opening up and sharing data and algorithms about learning may boost the development of technology-enhanced learning.

This paper addresses these issues by presenting our research on social tools to support networked learning. These tools deal with three main themes: peer support, learner support, and online learner identity. Figure 1 shows that different theories and technologies should be considered to develop such tools. Furthermore, the data learners leave when using social network tools, such as YouTube, LinkedIn or Wikipedia, is a valuable source for the envisioned tools.

Peer support

Online learning, e-Learning 2.0, is social learning through and through. This means that peers will often fulfil the needs that arise in the course of their learning, be it the need to have a content question answered, to find relevant learning resources, to discuss a particular topic or indeed to get friendly advice. The number of potential collaborators in online environments is virtually endless, having the important benefit that among those for sure the right person is present. This stands in sharp contrast with offline environments - classrooms, neighbourhoods, villages - where for physical reasons those numbers are restricted and even fairly small. However, this very endlessness brings up the problem of how to find that right person. Mechanisms that work in the offline world such as your memory of accidental meetings or, more sophisticatedly, your address book do...
not suffice. Using only people to which you already are strongly linked will ensure that you miss the potentially valuable contributions that people may make to which you are only weakly linked or not linked at all (Granovetter, 1973). Software tools are therefore needed that match your specific needs to the people in your learning network who could potentially fulfil those needs.

To be able to make such a match, tools first need to analyse the content of the request for help; second, they need to mine profiles of network users (but see online learner identities); third, they should use efficient and effective rules to make the match to recommend the most suitable peers. All three elements are the subject of ongoing research (De Bakker et al., 2010; Fetter et al., 2011; Rajagopal et al., 2011; Sie et al., accepted; Van Rosmalen, 2008).

The main assumptions behind this research are that: (a) when a learner understands her networked learning behaviour, she will adapt her personal learning network into a more supportive environment for her learning, (b) engaging social interactions are triggers for lifelong learners to reflect on their behaviour and practice, and (c) Tools based on network analytics can support learners in monitoring their behaviour and roles in a network

Learner support

The oldest form of learning works through direct experience: you do something, compare its effect with the intended effect, and decide to do it differently next time - or not, as the case may be. As a species, we are particularly good at this kind of learning through cultural transmission. We have perfected it by externalising our experiences and laying them down in media such as books, films, audio recordings etc.

Online learning is no different than offline learning in that it to a significant extent depends on media. Some are more social than others. So books that have been digitized and 'put on the web' are a direct translation of the ordinary books we know and therefore lack a social dimension. However, blog posts, which allow comments and track backs, already are a much more social medium. And finally, synchronous chats the results of which are stored for later use are of course thoroughly social in nature.

To be able to use such media, they need to be accessible. In terms of transaction costs it would be optimal if those media were freely accessible, under some creative commons license (open educational resources or OERs). That way, a learner can access them immediately, without further ado. However, before resources can be accessed at all, they need to be found and retrieved. Finding them is a matter of making a proper match between the learner’s learning needs and the content of the resources. This requires the ability to search for and catalog (on the fly) resources, to analyse learner needs, and match the two to provide recommendations and guidance over resources that best suit learner’s needs and preferences. All of this is the topic of ongoing research (Drachsler, 2009; Drachsler et al., 2010, Sie et al., 2011). The main assumptions behind this line of research is that (a) giving insight into the prospective value of peers in a network will enhance learners’ performance; (b) personalised recommendations of learning resources will boost learners’ performance; and (c) standardised, open datasets will boost the development of algorithms for the learning domain.

Online Learner Identity

Our identity is a complex characteristic, which comprises our beliefs (what we believe), desires (what we want) and dispositions (what we are capable of). We discover, perform and negotiate this identity through dialogue and in interaction with others (Taylor, 1991; Swan & Bosson, 2008). Interaction through social media and networks provides new possibilities to construct and negotiate these identities (Merchant, 2006). The proliferation of social software has provoked an escalation of online dialogue that translates into tagging, rating, blogging, commenting, liking, connecting or disconnecting, which in turn results in strengthening or weakening of our ties with others (Granovetter, 1973).

Online identities are essential for networked learning, in which people actively and jointly construct their understanding of the world through their interaction with others. Christakis and Fowler (2009) claim that to know who we are, we must know to whom we are connected in our social network. The influence social networks have on our identity works in two ways: through the structure of the network (connections), and the information, behaviour that it is disseminated throughout the network (social contagion). Research has shown
that social networks influence, for instance, happiness, cooperation, and even obesity. This influence spreads through the social network, even as far as to third-degree connections (Christakis & Fowler, 2009). Unfortunately, the way the social web currently operates promotes fragmentation of online identities. It is not in the interest of commercial social media sites to promote the use of consistent identities across sites. Indeed, they act as walled identity gardens. And to the extent that online learning makes use of these sites for profile information, online learner identities are therefore fragmented. Because of the large influence that commercial social media sites such as Facebook, Twitter and Google have, these issues are not easily resolved, in spite of ongoing research on them (e.g., Berlanga & Sloep, 2011; Tandukar & Vassileva, 2011; Abel et al., 2010).

Lifelong learners, in any case, are confronted with an overload of online activities, which makes it difficult for them to make sense of how these activities contribute to their learning: what, how and from whom are they learning. To tackle this problem we aim to consider those footprints learners leave online that are conducive to their learning. These footprints represent their Online Learner Identity: the desires and beliefs they harbour, the dispositions they have. Through them, once provided with the right learning tools, learners would become conscious of how they can best learn online (Berlanga & Sloep, 2011). The assumption is that an Online Learner Identity will (a) foster learner’s self-reflection; (b) make it possible that learners profit from the online realm; and (c) enhance online lifelong learning.

Technologies

This section briefly introduces some of the technology that is used to develop tools and platforms that support the three themes described above.

Social Network Analysis

Social network analysis originated from two disciplines. In the 1930s, the Gestalt principle emerged, and one of the leading researchers, Jacob Moreno, developed the notion of sociograms to map the relations between people. Later, Moreno identified key individuals in the sociogram and called them ‘sociometric stars’ (Moreno, 1934).

In the 1950s, scholars at Manchester University started observing conflicts in groups. Barnes, Bott and Mitchell began putting emphasis on the community as a whole, instead of studying individual relationships (Barnes, 1954). Based on their research, Harrison White and his group at Harvard developed mathematical models to analyse social structures. One of White’s students, Mark Granovetter, wrote a seminal paper about the strength of weak ties (Granovetter, 1973). He found that people who found a new job, got it through mere acquaintances, rather than family and close friends.

Mathematical models such as the ‘centrality’ of individuals in a social network may tell us how people learn from peers in a network. Whom do they learn from, and why did they choose these people to learn from? Does their position lead to a certain status in the network, or is it the other way around?

Recommender Systems

The invention of the Internet also brought us some unexpected problems. For instance, email spam required appropriate measures to get rid of these unwanted email messages. A collaborative approach to identifying spam, and combining the findings to filter out new spam, a technique called collaborative filtering (Goldberg et al., 1992), became the start of a new area of research: Recommender Systems (Resnick & Varian, 1997). Recommender systems advise people about new content that is presented to them, be it movies, web pages, or news, based on 1) their previous preferences and 2) people that are similar to them. A good example of a recommender system is the website Amazon.com. At Amazon.com, someone that viewed a book receives recommendations about other books, based on what other viewers of that book viewed. Such recommendation techniques can in principle also be used to filter out unnecessary learning resources that contribute to information overload. Since 2000, there has been extensive research on Recommender Systems in the domain of Technology-Enhanced Learning. A good overview for that particular domain is provided by Manouselis et al. (Manouselis et al., 2011).

Multi-Agent Systems

In Multi-Agent Systems (MAS), distinct software agents are used to solve problems in a distributed way. Each of the agents has its distinct purpose, and together, they form a collective that can solve problems efficiently and
effectively, in a distributed way. Agents are characterized by autonomy, proactiveness, reactivity, and social ability (Wooldridge, 1995). Thus, each of the agents has its own way of reasoning and behaving. The added value of having multiple agents is best explained by the proverbs “Two heads are better than one” and “The whole is greater than the sum of its parts”. When we combine the reasoning and behaviour of multiple agents, we can exhibit more complex, well-wrought behaviour. We can simulate the behaviour of such agents and use the simulation to study social phenomena. Also, we can let agents interact with people, like intelligent virtual agents that try to grasp human emotions (Pontier, 2010).

In learning sciences, we may use MAS to analyse the behaviour of and interaction among a group of learners. Every individual is unique, and so are learners. If we model each and every learner as a single agent with unique characteristics, we can simulate their interactions and study them without the costs, time, and effort that it takes to study them in real life. Based on such a simulation, we could even model and test a proposed intervention within the simulation before testing it with the learners.

Current projects

Table 1 shows an overview of current research projects we do in the themes discussed earlier.

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer support</td>
<td></td>
</tr>
<tr>
<td>CEFcult</td>
<td>The aim of the CEFcult project is to promote intercultural professional communication with foreign language users by means of an open source web 2.0 assessment tool. The principal outcome of the project will be an online environment for the assessment of speaking skills and intercultural competence in professional communication (Rajagopal et al., 2011).</td>
</tr>
<tr>
<td>TeLLNet</td>
<td>The TeLLNet project is to study the eTwinning network (currently over 86,000 teachers) through visualisation techniques, Social Network Analysis (SNA) and prospective scenario building exercises. Using these techniques, the goal is to identify the main structures, actors, networks and Communities of practice that are effective in sharing practices, encouraging innovation and creativity at schools (Vuorikari et al., 2011).</td>
</tr>
<tr>
<td>Biebkracht</td>
<td>The Biebkracht pilot project of a learning network for librarians. It is intended for the staff members of the public libraries in Gelderland (The Netherlands). The ultimate goal is to create a learning network that (a) will foster knowledge sharing and organizational learning, (b) will enhance creativity, and (c) will foster a common understanding of the issues / playing field / developments / the future at hand.</td>
</tr>
<tr>
<td>Learner support</td>
<td></td>
</tr>
<tr>
<td>ReMashed</td>
<td>ReMashed enables learners to integrate their Web2.0 sources, allowing them to personalise emerging information of a community to their preferences. Learners can rate information of the Web2.0 sources in order to define which contributions of other members they prefer. ReMashed takes the preferences into account to offer tailored recommendations (Drachsler, 2009).</td>
</tr>
<tr>
<td>Wikiwijs</td>
<td>Wikiwijs is a platform for teachers to search, use, make and share learning materials for primary, secondary and college education. The main aim is to stimulate the use of Open Educational Resources (OER) in the Dutch education.</td>
</tr>
<tr>
<td>dataTEL</td>
<td>In the educational world, only a very limited amount of datasets is publicly available and no agreed quality standards exist on the personalization of learning. The dataTEL Theme Team (funded by the EU STELLAR Network of Excellence) aims to address these issues</td>
</tr>
</tbody>
</table>
by advancing data driven research to gain verifiable and valid results and to develop a body of knowledge about the personalization of learning with recommender systems (Verbert et al., 2011). dataTEL recently became a Special Interest Group under the umbrella of the European Association of TEL (http://bit.ly/datatel).

Conclusions

In this paper, we have delineated our current work on social tools for networked learning. We have presented the theoretical background of three themes: peer support, learner support and online learner identity. We have argued why social tools are needed in these three themes. We have introduced some of the technology that could be used to develop such tools and we have provided an overview of the current social tools we are currently investigating and developing. We believe that the results of our current research efforts will provide valuable insights to advance further on research and development of social tools for networked learning. Particularly, we would like to consider different angles and explore, for instance, how meta-cognitive skills are developed in networked learning, what is the new set of social networking literacy needed to perform better in networked learning, how to provide learners with automatic support on affective, motivational and meta-cognitive matters, and how analysis of learners behaviour could be used to support learner engagement in networked learning environments.

References

Retrieved from http://hdl.handle.net/1820/2135
This is not the final version of the paper. Please look for the final version of the paper at the website of the Networked Learning Conference 2012 http://networkedlearningconference.org.uk/abstracts/sie.html.

