EFFECTS OF PEER-TUTOR COMPETENCES ON LEARNER COGNITIVE LOAD AND LEARNING PERFORMANCE DURING KNOWLEDGE SHARING

Ya Ping (Amy) Hsiao, Francis Brouns, Jan van Bruggen, and Peter B. Sloep

amy.hsiao@ou.nl

Centre for Learning Sciences and Technologies (CELSTEC)

Open University of the Netherlands

IADIS Cognition and Exploratory Learning in Digital Age (CELDA) 2012

19-21 October, Madrid, Spain
Learning Networks

• Peer support
 – How to select suitable tutors?
 – How to facilitate the knowledge sharing process?
Key words of this study

• Complex tasks
• Cognitive load
• Knowledge sharing
• Tutor competences
Task complexity: Simple vs. Complex

Task complexity is determined by **interactivity** of multiple information elements (Sweller, 2006).

Two essay examples:

- Please describe **men’s** preferences in partner selection and marriage forms.

- (Our task) Please compare and contrast **men’s** and **women’s** preferences in partner selection and marriage forms.

Complex tasks -> Knowledge sharing

• A **tutee** who works on a complex task needs knowledge sharing with a **tutor** who provides help.

• Knowledge sharing with a **tutor** is likely to alleviate tutee cognitive load imposed by complex tasks because
 – the tutee can acquire **extra cognitive resources** from the tutor (e.g., factual or procedural knowledge).
 – the tutor can stimulate the tutee to perform **higher-order cognitive processing** (e.g., asking think-provoking questions).

✓ Whether knowledge sharing can achieve these depends on **tutor competences**.
Research questions of this pilot

• Which **tutor competences** can alleviate tutee cognitive load and promote better learning performance?

• What are the effects of **supporting** tutors (IV) to have certain competences on tutee cognitive load (DV1) and learning performance (DV2)?
Literature review and our previous studies: Two tutor competences

Tutoring skills (TS)

Pedagogical skills
- asking and answering questions
- giving explanations

Task processing skills
- procedural knowledge on processing a particular task type (e.g., writing a comparison and contrast essay)

Content knowledge (CK)

Knowledge on a particular topic
- e.g., gender differences in partner selection, evolution theory
Design and treatments

<table>
<thead>
<tr>
<th>Class 1 (day 1)</th>
<th>Class 2 (Day 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS</td>
<td>TS</td>
</tr>
<tr>
<td>CK</td>
<td>CK</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tutors</th>
<th>Tutees</th>
<th>Tutors</th>
<th>Tutees</th>
<th>Tutors</th>
<th>Tutees</th>
<th>Tutors</th>
<th>Tutees</th>
</tr>
</thead>
</table>

Treatments:
Supporting tutors to have certain competences

TS groups
TS tutors helped tutees by using written instructions: how to ask and answer questions and how to step-by-step process the task.

CK groups
CK tutors helped tutees by using supplement texts related to the task topic.
Process

Self-study (1 hour)
Students studied the course materials online.

Pre-measures
A prior knowledge test
A tutoring skills questionnaire

Peer tutoring when tutees worked on the task

Post-measures
Cognitive load
Post-test
Evaluation questionnaire of the tutoring process
Results

<table>
<thead>
<tr>
<th></th>
<th>TS tutees (n = 7)</th>
<th>CK tutees (n = 7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(M)</td>
<td>(SD)</td>
</tr>
<tr>
<td>Total cognitive load on NASA-TLX (tot: 120)</td>
<td>48.43</td>
<td>14.60</td>
</tr>
<tr>
<td>Post-test (tot: 10)</td>
<td>5.57</td>
<td>1.90</td>
</tr>
<tr>
<td>Essay (tot: 10)</td>
<td>6.90</td>
<td>1.27</td>
</tr>
</tbody>
</table>
Reflections and implications for the future study

• Chats: only 2 TS tutors and 5 CK tutors actually used the treatments.
• A prior training is necessary as suggested by peer tutoring studies.
• The task is not complex enough: students might have acquire internal scripts of comparison and contrast essays.