Overview

1. setting the scene 5
2. design issue 6
3. can peers help, how? 5
4. social networking tools 6
5. platforms 5
6. in conclusion 4
setting the scene
Manuel Castells: network society, information society

Alvin Toffler: knowledge economy

Marshall McLuhan: Global Village

Peter Drucker: knowledge worker

Knowledge workers in today’s workforce are individuals who are valued for their ability to act and communicate with knowledge within a specific subject area. ... Fueled by their expertise and insight, they work to solve those problems, in an effort to influence company decisions, priorities and strategies. What differentiates knowledge work from other forms of work is its primary task of “non-routine” problem solving that requires a combination of convergent, divergent, and creative thinking.

[Knowledge workers] require new work styles ... find themselves operating in distributed, dynamically-changing and technologically-mediated ... ill-defined, non-hierarchical environments within expanding geographical and time horizons; developing and maintaining networks with peers and expert communities and collaborating in culturally diverse and geographically distributed teams ... (learning) goals are emergent ... there is no longer any one authority that can tell you what you need to learn and when ... the ability to self-regulate one’s learning

complex, authentic, ill-defined, ‘wicked’ problems
complex, authentic, ill-defined, ‘wicked’ problems
Dan Pink

complex, authentic, ill-defined, ‘wicked’ problems
examples of prof. networks

www.biekbracht.nl
www.handover.ou.nl/
design issue
How would you design for learning to solve complex, wicked, ill-defined problems?
designing for learning

- learner
 - performs
 - learning activities
 - learning opportunity
 - 0..* has
 - learning outcome
 - learning environment
 - fellow learners
 - staff (admin, teacher)
 - artefacts
criteria for successful designs

learner

performs

0, 1

1..*

learning activities

attractiveness

learning opportunity

realized vs intended outcome

efficacy

efficiency

learning outcome

effort to achieve outcome

learning environment

fellow learners

staff (admin, teacher)

artefacts

student perceptions

productive learning
Design methodology: e.g. 4C/ID

- based on whole tasks (activities)
- classes of equally difficult tasks
- within a class, less teacher support
- just-in-time information available

wicked problems can’t be designed for

- problem space is open, solution requires creativity
- how would you develop tasks, task classes, teacher support, j-i-t information for such problems?
how about self-regulation?

- how about doing it yourself as a learner?
- expert can do that, they’ve learnt to
- novices cannot, they need to be helped to acquire those skills
can peers help? if so how?
interaction equivalence theorem

- Terry Anderson (2003)
- Three kinds of interactions: student-teacher, student-content, student-student
- Deep learning is possible if one is maximised
professionals: peer support is wide-spread

• Margaryan et al. (2009)
• experts and novices both seek recourse to peers
• (experts, but not peers engage in deliberate systematic self-reflection)
peer support works!

• Van Rosmalen et al. (2008)
• peers (students) are happy to help each other
• the quality of their help is ok
mechanism behind networked peer help

- but: there is an upper limit of 100-150 to the number of strongly linked people we can maintain Robin Dunbar (1993)
the network predicament

- the bigger a network the better the chances the right peer hides somewhere
- the bigger the network the harder it is to find that peer
- solution: dedicated tools that help you search, that filter, that recommend
social networking tools
peer support using LSA

Collaborative filtering

Tuesday, November 20, 12
Coalitions in cooperation networks

TrustWorthiness ANtecent Schema

- Communality (psychological)
- Ability (professional)
- Benevolence/courtesy (personal)
- Internalised norms (ethics)
How about existing social network sites?

- not dedicated to professional learning
- (about getting your data for ads)
- privacy-issues, certainly for companies
- used and useful, though
platforms
• commercial social network tools combine a website with services (tools)

• but: custom-built ones also need a user interface, a means to interact with them

• (APIs are needed to, that’s for tools to interact with each other)
two social intranets
three social VLEs
novices & experts

- novices: social VLE?
- experts: personal learning network!
Alec Couros on PLNs for teachers

Joyce Seitzinger on PLNs for teachers
in conclusion
1. information society (knowledge workers, lifelong learners, networked professionals) (also) demand other than formal modes of learning for professionals

2. peers partly fulfill role teachers in online networks

3. tools help match peers (filtering of content and people)
4. such tools need a user interface

5. social VLEs and social intranets for novices (and companies who want to stay in control)

6. PLNs (consisting mainly of existing social networking tools) for experts
two issues

- commercial social networking sites
- generic ones are bad for user experience; privacy is an issue
- the sociology of interacting peers vs network dynamics
- some network structures ‘work’ better
Thanks for having me here!!!

mail: peter.sloep <at> ou.nl
my publications: www.mendeley.com/
profiles/peter-sloep; pbsloep.nl
CELSTEC publications - dspace.ou.nl
scoop.it: www.scoop.it/t/networked-
learning-learning-networks
blog pbsloep.blogspot.com
 twitter: pbsloep
 Google+: pbsloep
delicious: pbsloep
 slideshare: pbsloep