Toward an integrated analysis of verbal and visual data

the quest for expertise indicators

Els Boshuizen, Halszka Jarodzka, Thomas Jaarsma
Open Universiteit
Heerlen, Netherlands
Goal

• Develop a theory of medical expertise development in visual domains

• … with the aim to develop instruction and support for different levels of development
What is the problem?

• Expertise theories have been developed in non-visuals domains and paradigms
 – Problem solving in these studies departed from ‘pre-digested’ information, using terms taught to students
• Isolated facts about expertise effects in indicators of visual information processing
 – Nothing or little about processes of information extraction
• Hardly any examples of combined analysis of visual and verbal information processing data
Encapsulation

- Large numbers of detailed, biomedical concepts are ‘encapsulated’ under higher order concepts
- that link biomedical and applied sciences
Structure of medical expert knowledge

Illness scripts

Enabling conditions

Fault

Consequences

Integrated knowledge network

Diagnosis

Management

Enabling conditions

Fault

Integrated knowledge network

Diagnosis

Management
What is the problem?

- Expertise theories have been developed in non-visuals domains and paradigms
 - Problem solving in these studies departed from ‘predigested’ information, using terms taught to students
- Isolated facts about expertise effects in indicators of visual information processing
 - Nothing or little about processes of information extraction
- Hardly any examples of combined analysis of visual and verbal information processing data
Perception and expertise

- Decreased entry time
- Fewer fixations
- Longer fixation duration; larger visual span/larger functional visual field
- Anticipatory
- Increased eye-hand span
Perception and expertise

- Decreased entry time
- Fewer fixations
- Longer fixation duration; larger visual span/larger functional visual field
- Anticipatory
- Increased eye-hand span
 - But susceptible to many other influences as well (e.g., age-related) that are not fully documented so far
What is the problem?

• Expertise theories have been developed in non-visuals domains and paradigms
 – Problem solving in these studies departed from ‘predigested’ information, using terms taught to students

• Isolated facts about expertise effects in indicators of visual information processing
 – Nothing or little about processes of information extraction

• Hardly any examples of combined analysis of visual and verbal information processing data
Complications

• Problem representation
 – Outcomes and explanation tasks

• Problem solving process
 – Perception & thinking
Toward a solution

- Reinvent encapsulations
- Develop visual-verbal coordination measures
Reinvent encapsulations

- Increased coherence
- Step skipping (compared to model)
- Disappearance of low level concepts, but which??
- Appearance of high level concepts
- Time
<table>
<thead>
<tr>
<th>Novices</th>
<th>Intermediates</th>
<th>Intermediates & Experts</th>
<th>Experts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaos / chaotisch</td>
<td>Colonepitheel</td>
<td>Atypisch</td>
<td>Klierbuizen</td>
</tr>
<tr>
<td>Rustig</td>
<td>Coloncarcinoom</td>
<td>Atypie</td>
<td>Slijmvlies</td>
</tr>
<tr>
<td>Onrustig</td>
<td>Proliferatie</td>
<td>Groei</td>
<td></td>
</tr>
<tr>
<td>Ingroei</td>
<td>???</td>
<td>Dysplasie</td>
<td></td>
</tr>
<tr>
<td>Tubuli</td>
<td>Vergroting</td>
<td>Hyperchromasie</td>
<td></td>
</tr>
<tr>
<td>Villi</td>
<td></td>
<td>(Kern)stapeling</td>
<td></td>
</tr>
<tr>
<td>Cellen</td>
<td></td>
<td>Desmoplasie</td>
<td></td>
</tr>
<tr>
<td>Weefsel</td>
<td></td>
<td>Cribriforme groei</td>
<td></td>
</tr>
<tr>
<td>Structuur</td>
<td></td>
<td>(Desmoplastisch) Stroma</td>
<td></td>
</tr>
<tr>
<td>Paars</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rondjes</td>
<td>Crypt(en)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epitheel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dus</td>
<td></td>
<td>Mucosa</td>
<td></td>
</tr>
<tr>
<td>Daarom</td>
<td></td>
<td>Lamina propria</td>
<td></td>
</tr>
<tr>
<td>Want</td>
<td></td>
<td>Architectuur</td>
<td></td>
</tr>
<tr>
<td>Omdat</td>
<td></td>
<td>Overzicht</td>
<td></td>
</tr>
<tr>
<td>Vandaar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maar</td>
<td></td>
<td>Diagnose</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Passen/passend/past</td>
<td></td>
</tr>
<tr>
<td>Misschien</td>
<td></td>
<td>Afwijkend(s)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afwijkingen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Toename/toegenomen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zeker</td>
<td></td>
</tr>
</tbody>
</table>
Develop visual-verbal-manipulation coordination measures

• On scarfs and transition matrices

Daniel Richardson

Presented at ASC2012 Using eye tracking to design and evaluate education and training methods

http://tinyurl.com/CELSTEC-ASC2012
cross recurrence plots

Recurrence
Recurrence at a particular time lag = density along a diagonal

49 Dyads - Superimposed CRP
THANK YOU