GaLA
Game and Learning Alliance
The European Network of Excellence on Serious Games

Deploying Serious Games for Management in Higher Education: lessons learned and good practices

Jannicke Baalsrud Hauge¹, Francesco Bellotti², Rob Nadolski³, Michael Kickmeier-Rust⁴, Riccardo Berta², Maira B. Carvalho²

¹Bremer Institut für Produktion und Logistik at the University of Bremen, Germany; ²Dept of Electronic and Telecommunication Engineering, University of Genoa, Italy; ³Centre for Learning Sciences and Technologies, Open University Netherlands; ⁴Knowledge Management Institute, Graz University of Technology, Graz, Austria
Introduction

- European economies tend towards being knowledge-driven,
- Success and competitiveness of European companies are ever more bound to their ability to be innovative and competitive.
- Leads to the need for changes in educational requirements.
- Need for teaching methods involving direct participation of students (O’Sullivan et al., 2011; Chryssouris and Mavrikios, 2006, Baalsrud Hauge et al., 2012).
- Game-based learning (GBL), in particular through SG might contribute Prensky 2003, Gee 2003; Ebner and Holzinger, 2007, Bellotti et al., 2010; Greitzer et al., 2007; De Gloria et al, 2012)
Problem description and objective

- Certain consensus about the educational potential of SGs in higher education (HE)
- Low deployment rate of SG in HE and their proper insertion in meaningful curricula.
- Generally attributed to an undefined teacher’s reluctance towards the use of games.
- Lack of papers describing deployment of SGs for HE
 - their educational benefits
 - providing guidelines and practices on their use,
 - comparison with other educational tools/techniques.

Make a first step in the direction of better characterization of the effectiveness and the use of SGs in HE
Theoretical foundation

Cognitive competences in the Bloom taxonomy (Bloom, 1956) vs. Learning goals in the Revised Bloom taxonomy (Anderson and Krathwohl, 2001)

<table>
<thead>
<tr>
<th>Cognitive competences in the Bloom taxonomy (Bloom, 1956)</th>
<th>Learning goals in the Revised Bloom taxonomy (Anderson and Krathwohl, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td>Remembering</td>
</tr>
<tr>
<td>Comprehension</td>
<td>Understanding</td>
</tr>
<tr>
<td>Application</td>
<td>Applying</td>
</tr>
<tr>
<td>Analysis</td>
<td>Analysing</td>
</tr>
<tr>
<td>Synthesis</td>
<td>Evaluating</td>
</tr>
<tr>
<td>Evaluation</td>
<td>Creating</td>
</tr>
</tbody>
</table>

Original and revised Bloom taxonomies

Kolb’s learning cycle:
- Concrete experiment (feeling)
- Reflective Observation (watching)
- Active Experimenation (doing)
- Abstract conceptualisation (thinking)
• Analysis based on teachers‘ experience in using the games
• Looked at how the games reflect Kolbs learning cycle and Bloom‘s revised taxonomy
• Analysis of three different games used for HE
 – managerial topics
 – Four different universities
 – Master courses
 – Two games developed specifically for the course, one commercial
 – One game used for online teaching only
 – Two used in class room settings
• Derived guidelines based on the analysis
Case study 1: The Scheldt

- Web-based, role-playing, single-user game developed via the EMERGO methodology and toolkit
- Learning objective is to analyze, understand and explain the problem of the soil-water systems in the Scheldt
- Used (0.7 ECTS) in a distance learning course on soil and water (4.3 ECTS) since 2010 at the Open University Netherlands (OUNL) mostly with 30-50 persons/course.
• Remembering:
 – Needed for carrying out other tasks
• Understanding:
 – Related to understand interaction between groundwater and
 surface water and between soil and water
• Applying:
 – Intervention and proposition of right measures
• Analysing:
 – Students learn to analyse, understand and explain the eco-
 system
• Evaluating:
 – Students need to evaluate and contrast
• Creating:
 – Students can propose alternative solutions
Kolb‘s Analysis

• Concrete experience (feeling):
 – systematically analyzes concrete problems using different tools, carrying out tasks

• Reflective observation (watching)
 – Observes how the process evolve and can match the observed

• Abstract conceptualisation (thinking)
 – Feedback from the NPC helps to conceptualize new knowledge

• Active experimentation (doing)
 – The player may change the scenario based on his observations and conceptualisation
Case study 2-Any business

GoVenture Any Business (http://goventureanybusiness.com)

- Modular and customizable simulation platform
- Company management and decision making
- Facilitated -> Course driven competitions
- Normally single users -> Multiplayer (teams of 2)
Analysis – Blooms

- Remembering:
 - Not a special focus. Practice helps remembering

- Understanding:
 - Understanding business concepts is fundamental for reading the reports

- Applying:
 - Apply the concepts in decision making

- Analysing:
 - Data are to be analysed to take decisions

- Evaluating:
 - Planning and decision journal writing

- Creating:
 - Not expected by players
Kolb’s Analysis

- **Experience the results of a simulated month**
- **Kolbs learning cycle**
 - Any Business
- **Analyze the simulation outcomes and compare with competitors**
- **Decide based on the models and set the decision parameters**
- **Formulate a mental model of how his decisions affected the results**
Objective: Increasing the awareness and understanding of the impact of strategic decision making in distributed manufacturing by simulation of production networks

- Used since 2007
- Blended learning concept
- Curriculum and game developed in parallel
• Remembering:
 – Necessary for other tasks, but information mostly available

• Understanding:
 – Essential for taking decisions to understand the environment and interrelations

• Applying:
 – Supports the application of specific methods for strategic SCM

• Analysing:
 – The decision making process requires that the students analyse the situation and the indicators available

• Evaluating:
 – Continuesly needed in order to decide and change

• Creating:
 – helps to identify specific structures and pattern. It encourages the players to combine different information and to construct new knowledge
Kolb’s Analysis

• Concrete experience (feeling):
 – Starts with a scenario, carry out tasks, systematically analyzes concrete situations

• Reflective observation (watching)
 – Observes how the process evolve and can match the observed with the given target

• Abstract conceptualisation (thinking)
 – during game play, the student can draw his conclusion based on how his indicators (financial, stock level, use of material, material flow etc.) emerge.
 – strongly supported in the common debriefing session and by the facilitation of the game.

• Active experimentation (doing)
 – The game evolves by letting the players change the scenario
• Course designed games: fulfilment of learning objectives of the course is given the highest priority

• COTS are usually more attractive, as they feature high level graphics and multimedia look, cheaper, more transferable

• Assessing existing games from a curriculum point:
 – adjusting the curriculum towards embedding the game for the purpose of transfer of learning,
 – offer functional requirements for modding such a game towards evidence-based transfer of learning within the game.

• To guarantee successful development and deployment it is important to carefully align gaming goals with course goals and course assessment
Best practices and lessons learned II

- SGs should typically be used in blended learning settings, with briefing and debriefing sessions.

- The duration of the session is critical.

- A critical factor concerns the instructions given to the students before and during the game.

- Degree of freedom important.

- The facilitator or the teacher should pay attention at the students’ learning outcomes after the game.

- A crucial step when preparing a course exploiting SGs is the actual choice of the games.
• The three games through the revised Bloom’s taxonomy:
 – focus more on supporting the level of analysing, evaluating and creating
 – in different ways
• highlight that this has a strong relationship with the role of the
 teacher/facilitator.

• The higher level to be achieved according to Bloom, the more need for
 supporting the abstraction process

• We do not agree that new education practices should turn the teacher
 from a “teaching machine” into a consultant nor a simple facilitator.

• All the three games seem to correspond to the Kolb’s learning model

• The effectiveness of the games: All case studies shows positive
 learning outcome and seem effective
Conclusion II and Future work

- Courses often have to undergo an iterative design process, adapting the course set-up.
- Continuously monitoring and a proper working experience needed.
- The high use of resources challenge developers and users to look at new ways of designing and reusing elements.
- The deployment rate of SG in HE is still quite low, but
 - Seems effective and motivating in applying and constructing knowledge.
 - Games often more suited to children than to adults, needs to be adapted to their needs.
- Games teaching complex material requires suitable LA tools both for feedback to the students as to support the teacher.
- Integration in existing curricula requires a careful pedagogical planning and a smart usage of games.
Bibliography

This work was partially funded by the European Union, under the Framework Programme 7 (Information Society Technologies - ICT), in the Games and Learning Alliance (GaLA) Network of Excellence, Grant Agreement nr. 258169.

This work was supported in part by the Erasmus Mundus Joint Doctorate in Interactive and Cognitive Environments, which is funded by the EACEA Agency of the European Commission under EMJD ICE FPA n 2010-0012.