How to best support users in social learning platforms with recommendations?

Soude Fazeli, PhD candidate
Dr. Hendrik Drachsler
Prof. Dr. Peter Sloep
Open Discovery Space (ODS)
A socially-powered, multilingual open learning infrastructure in Europe

Recommendations!

Which recommender approach best fits ODS platform?

Limitations in learning domain:
Too sparse data
Too few 5-star ratings
No proper tags and annotations
Learning domain has its own data and limitations, expectations

- Too sparse data
- Too few 5-star ratings
- No proper tags and annotations
- Can not use only popular reference datasets like MovieLens, Netflix, etc.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Users</th>
<th>Learning objects</th>
<th>Transactions</th>
<th>Sparsity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE</td>
<td>105</td>
<td>5,696</td>
<td>23,032</td>
<td>99.71</td>
</tr>
<tr>
<td>OpenScout</td>
<td>331</td>
<td>1,568</td>
<td>2,560</td>
<td>99.51</td>
</tr>
<tr>
<td>MovieLens 100k</td>
<td>941</td>
<td>1,512</td>
<td>96,719</td>
<td>93.69</td>
</tr>
</tbody>
</table>
• **RQ:** How to best support users in social learning platforms with recommendations by using the data originating from social activities of users within the platform?

 • Performance metrics commonly used in recsys
 • Social network analysis
 • User satisfaction
Recommender algorithms

1. Content-based

![Diagram showing a user likely to buy a product based on similar preferences.]

2. Collaborative filtering ✓

![Diagram showing a network of users and their preferences.]

The images are not clearly visible due to the resolution, but they represent the concepts of content-based and collaborative filtering.
Similarity

Sparsity!
Improving prediction accuracy of recommendations

Trustworthy users == like-minded users
• Golbeck’s TidalTrust
• Trust-aware recommender by Massa and Avesani
• Andersen et al’s axiomatic approach
• T-BAR by Bellaachia and Alathel
• And many more…

All require users to give explicit trust ratings!
• Lathia et al.’s trust-based recommender #neal-lathia #recsys
• Trust model by O’Donovan and Smyth
A social recommender system: T-index approach

1. Description

- Trust networks: a graph
 - Nodes: users
 - Edges: trust relationships
 - Weights: trust values originating from similarity
- Each user can be assumed as an agent
- Improve the process of finding nearest neighbors
 - T-index
 - TopTrustee
A social recommender system: T-index approach

2. Trust propagation mechanism

• A new trust relationship between two far unconnected users is inferred if and only if:
 • Condition 1:
 • Mutual trust value between intermediate users is higher than a certain threshold (v)
 • Condition 2:
 • The number of connecting edges is lower than an upper bound (L)
if A trusts B and B trusts C, then A trusts C if and only if condition 1 is met and condition 2 is met
A social recommender system: T-index approach

3. T-index?

- **T-index**: measure of users’ trustworthiness
- **H-index**: the impact of publications of an author

Indegree \((u_a) = 7\)

Indegree \((u_b) = 5\)

T-index \((u_a) = 2\)

T-index \((u_b) = 4\)

Note! Cluster: a group of users who all trust a common user as the most trustworthy one (central user)
A social recommender system: T-index approach

3. T-index?

Algorithm 1 Computing T-index

1: procedure COMPUTE-T-index(user, TrustedList)
2: TrusteValueList ← TrustedList.sort(trustValue, desc)
3: for all trustValue in TrusteValueList do
4: trustValue ← multiply(trustValue, Max_T-index)
5: end for
6: Counter ← 1
7: for all trustValue in TrusteValueList do
8: if Counter < trustValue then
9: Counter ← Counter + 1
10: else
11: break
12: end if
13: end for
14: T-index ← Counter - 1
15: return T-index
16: end procedure
A social recommender system: T-index approach

4. What T-index is for?

- TopTrustee: a list of top raters of an item sorted by T-index
- Helps the process of finding nearest neighbors
 - Providing access to trustworthy users across the trust network including even those outside the traversal path length limit (L)
A social recommender system: T-index approach

4. Results using MovieLens 100k

MAE with and without T-index

Coverage with and without T-index
Data-driven study
1. Method

• Testing recommender algorithms
 • Trust-based recommender
 • If explicit trust is available (Epinion)
 • If not available: similarity measures + walking algorithm (modified BFS)

• Datasets
 • MovieLens 100k– reference dataset
 • MACE, OpenScout – quite similar to the future ODS dataset
Data-driven study

3. Setting

- $v = 0.1$ (Condition 1), $L = 3$ (Condition 2)
- Training set 80% and test set 20%
- Sizes of neighborhoods $k = (3, 5, 7, 10, 20)$
- Size of TopTrustee list $m = 5$
Data-driven study

4. Tools
Data-driven study

5. Data

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Users</th>
<th>Learning objects</th>
<th>Transactions</th>
<th>Sparsity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE</td>
<td>105</td>
<td>5,696</td>
<td>23,032</td>
<td>99.71</td>
</tr>
<tr>
<td>OpenScout</td>
<td>331</td>
<td>1,568</td>
<td>2,560</td>
<td>99.51</td>
</tr>
<tr>
<td>MovieLens</td>
<td>941</td>
<td>1,512</td>
<td>96,719</td>
<td>93.69</td>
</tr>
</tbody>
</table>
Data-driven study

6. Results

F1 of the K+NN and baseline CFs based on the size of neighborhoods
Data-driven study
7. Implicit social networks for MovieLens
Data-driven study

3. In-degree centrality

In-degree distribution of the users in the implicit social networks for different datasets using graph-based approach; k=10
Data-driven study
4.2. Created trust network

Without T-index

With T-index
Conclusion

• The aim is to support user in social platforms to find the novel and relevant recommendations on resources

• Trust-based recommender systems can be a solution
Ongoing and Further work

• Go online with the ODS platform (October 2013)
• User evaluation study (December 2013)
• Evaluating trust-aware recommenders based on explicit trust ratings given by users: Massa et al., Golbeck, and T-index
Soude Fazeli
PhD candidate
Open University of the Netherlands
Centre for Learning Sciences and Technologies (CELSTEC) PO-Box 2960
6401 DL Heerlen, The Netherlands
email: soude.fazeli@ou.nl
Joint paper proposal

- Trust-based recommenders
 - Many of them are memory-based
 - A few studies on model-based
 - Using MF methods (Jamali et al., 2010)
 - Explicit trust e.g. Epinion
 - Evaluation only on common metrics: RMSE, Precision
 - MF + inferred trust
 - Explicit trust vs. inferred trust
 - Evaluation also in terms of SNA metrics
 - User satisfaction
• Hao Ma
 • Comparing implicit Trust-based recsys; explicit trust

• Diverse recommendations; not only similar ones
 • Initial recommendations
 • Filtering and refining recommendations using tree structures for item’s content features
 • Aim: To make diverse recommendations