Prioritering stortplaatsen voor *urban mining* en natuurontwikkeling in de zilvergroene zones van het Nationaal Natuurnetwerk

Urban mining Limburg - Groen voor Afval

Auteurs: Werner Kocken, Patrick van de Heisteeg, Joost Nieuwenhuis en Heidi Verhoeven

Onderzoek uitgevoerd in opdracht van Natuur en Milieufederatie Limburg, Roermond, Nederland Heerlen, 19 juni 2015.
Colofon

<table>
<thead>
<tr>
<th>Adviesrapport</th>
<th>Urban mining Limburg - Groen voor Afval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opdrachtgever</td>
<td>Dit onderzoek is uitgevoerd in opdracht van Natuur en Milieufederatie Limburg (NMFL), de heren R. Renneberg en H. Heijnen. R.Renneberg@milieufederatielimburg.nl, 0475-38 64 10</td>
</tr>
<tr>
<td>Uitgave</td>
<td>InCompany Milieuadvies, faculteit Natuurwetenschappen, Open Universiteit, Postbus 2960, 6401 DL Heerlen, NL. www.ou.nl/nw</td>
</tr>
<tr>
<td>Projectteam</td>
<td>Team M136, Urban mining</td>
</tr>
<tr>
<td>Projectteamleden</td>
<td>Werner Kocken, Patrick van de Heisteeg, Joost Nieuwenhuis en Heidi Verhoeven.</td>
</tr>
<tr>
<td>Projectcoach</td>
<td>Dr. Jan Lutgerink, Open Universiteit Nederland – InCompany Milieuadvies</td>
</tr>
<tr>
<td>Datum versie</td>
<td>19-06-2015</td>
</tr>
<tr>
<td>Status</td>
<td>in bewerking</td>
</tr>
<tr>
<td></td>
<td>voor review (intern: team/projectcoach; extern: opdrachtgever)</td>
</tr>
<tr>
<td></td>
<td>ter beoordeling</td>
</tr>
<tr>
<td></td>
<td>definitief</td>
</tr>
<tr>
<td>Copyright</td>
<td>© 2015 Open Universiteit, Heerlen</td>
</tr>
</tbody>
</table>

De auteursrechten op dit materiaal berusten bij de Open Universiteit. Behoudens uitzonderingen door de Wet gesteld mag zonder schriftelijke toestemming van de rechthebbende(n) op het auteursrecht niets uit deze uitgave worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of anderszins, hetgeen ook van toepassing is op de gehele of gedeeltelijke bewerking. Copyright on this material is vested in the Open Universiteit. Save exceptions stated by the law no part of this publication may be reproduced in any form, by print, photoprint, microfilm or other means, included a complete or partial transcription, without the prior written permission of the publisher.

InCompany Milieuadvies is het online milieuadviesbureau van de Open Universiteit (www.ou.nl). Studenten werken in teamverband aan echte milieuproducten van echte opdrachtgevers. Leren en werken zijn één in deze bijzondere cursus, die de afronding vormt van de wetenschappelijke Bachelor-of-Science opleiding Milieu-natuurwetenschappen.
Projectgegevens

<table>
<thead>
<tr>
<th>Titel</th>
<th>Urban Mining Limburg – Groen voor Afval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opdrachtgever</td>
<td>Natuur en Milieufederatie Limburg (NMFL), Godsweederderstraat 2, 6041 GH, Roermond, T 0475-38 64 10.</td>
</tr>
<tr>
<td>Omschrijving opdracht</td>
<td>Inventariseer de oude stortplaatsen in Limburg en onderzoek of deze door het herwinnen van grondstoffen en energie, rendabel kunnen worden herwonnen voor de natuur.</td>
</tr>
<tr>
<td>Description of the order</td>
<td>Assess the disused landfills in the Dutch province of Limburg and examine if, by recovering materials and energy, these landfills can be profitably recovered for nature.</td>
</tr>
<tr>
<td>Trefwoorden</td>
<td>Afval/stortplaatsen/grondstoffen/circulaire economie/recycling/natuurnetwerk/verdrogingsbestrijding.</td>
</tr>
<tr>
<td>Key words</td>
<td>Waste/landfill/primary raw materials/circular economy/recycling/nature network/desiccation policy.</td>
</tr>
<tr>
<td>Projectleider M136</td>
<td>Werner Kocken, cursus Virtueel milieuadviesbureau, N5021, 851199773, wo-bachelor Milieu-natuurwetenschappen (BSc.), major natuurwetenschappen/beleid/gezondheid), Alzira 12, 5629 NJ, Eindhoven.</td>
</tr>
<tr>
<td>Projectmedewerker 1</td>
<td>Patrick van de Heisteeg, cursus Virtueel milieuadviesbureau, N5021, 83890716, wo-bachelor Milieu-natuurwetenschappen (BSc.), major natuurwetenschappen/beleid/gezondheid), Landfort 109, 8219 AK, Lelystad.</td>
</tr>
<tr>
<td>Projectmedewerker 2</td>
<td>Joost Nieuwenhuis, cursus Virtueel milieuadviesbureau, N5021, 851094904, wo-bachelor Milieu-natuurwetenschappen (BSc.), major natuurwetenschappen/techniek/gezondheid), Winterkoninkjesstraat 17, 9203 BS, Drachten.</td>
</tr>
<tr>
<td>Projectmedewerker 3</td>
<td>Heidi Verhoeven, cursus Virtueel milieuadviesbureau, N5021, 838930820, wo-bachelor Milieu-natuurwetenschappen (BSc.), major natuurwetenschappen/beleid/gezondheid), Rooseveltlaan 5, 3223 NB, Hellevoetsluis.</td>
</tr>
<tr>
<td>Projectcoach</td>
<td>Dr. Jan Lutgerink, faculteit Natuurwetenschappen, Open Universiteit Nederland, als projectcoach nauw betrokken bij de voortgang en de validatie van het onderzoek.</td>
</tr>
<tr>
<td>Examinator</td>
<td>Dr. Wilfried Ivens, faculteit Natuurwetenschappen, Open Universiteit, Heerlen, NL.</td>
</tr>
</tbody>
</table>
Inhoud

Colofon .. 2
Projectgegevens .. 3
Voorwoord ... 6
Lijst met afkortingen ... 6
Samenvatting ... 7
Abstract .. 9
1. Inleiding ... 11
1.1 Achtergrondinformatie ... 11
1.2 Probleem .. 11
1.3 Vraagstelling .. 12
1.4 Doelstelling .. 12
1.5 Kenmerken (criteria) resultaten ... 13
1.6 Randvoorwaarden ... 13
2. Methode ... 15
2.1 Literatuuronderzoek .. 15
2.2 Actoren ... 15
2.3 Rekenwerk voor MCA & exploitatiebegroting ... 16
2.4 Bepaling wegingsfactoren MCA ... 18
3. Resultaten ... 19
3.1 Stortplaatsen in de zilvergroene natuur ... 19
3.1.1 Stortplaatsen binnen het Nationaal Natuurnetwerk .. 19
3.1.2 Beheer, eigendom, eigenschappen en samenstelling .. 19
3.2 Maatschappelijk draagvlak voor urban mining ... 21
3.3 Technieken en methoden voor urban mining ... 22
3.3.1 Onbewerkt afvoeren, verbranden en bijbehorende kosten ... 22
3.3.2 Sorteerinstallaties en bijbehorende kosten ... 22
3.3.3 Thermische conversie en bijbehorende kosten ... 24
3.4 Oorspronkelijk & wenselijke natuurwaarden .. 26
3.4.1 Habitats en milieueisen per natuurdoeltype .. 26
3.4.2 Normkosten voor de sanering van bodem en de inrichting van natuurgrond 26
3.4.3 Keuze voor een natuurdoeltype en mogelijke alternatieven ... 28
3.4.4 Wie is verantwoordelijk voor de kosten van natuurherstel? .. 28
3.5 Afwegen waarden om te prioriteren .. 29
3.5.1 Het model en de basis ... 29
3.5.2 Criteria categorieën en criteria van de MCA-light .. 29
3.5.3 De geprioritiseerde lijst van stortplaatsen ... 30
3.6 Inschatting haalbaarheid ... 31
3.6.1 Exploitatiebegrotingsmodel in Excel .. 31
3.6.2 Effect-, mitigatie-, en compensatieanalyse .. 32
4. Discussie en conclusie .. 33
4.1 Discussie .. 33
4.2 Conclusies .. 36
5. Aanbevelingen ... 37
Literatuur ... 38
Bijlagen .. 42
Bijlage WP1.A Deskresearchdata .. 42
 WP1.A1 Wetgeving .. 42
 WP1.A2 Beschikbare stimuleringsmaatregelen ... 43
 WP1.A3 Overig, van belang voor haalbaarheid ... 44
Bijlage WP2.B Grootschalige thermische conversie ... 46
 WP2.B1 Nederlandse AVI’s en de R1 status ... 46
 WP2.B2 Wervelbedoven .. 48
 WP2.B3 Pyrolyse en vergassing .. 48
 WP2.B4 Plasmatechnologie ... 49
 WP2.B5 Wervelbedvergassing .. 50
Bijlage WP3.A Deskresearchdata ... 52
 WP3.A1 Milieukennismerken per natuurdoeltype ... 52
 WP3.A2 Toelichting op bodemsaneringstechhienien ... 55
 WP3.A3 Kosten voor grondwaternsaneringstechhienien .. 55
Bijlage WP4.A Deskresearchdata ... 58
 WP4.A1 Tabellen en model uit Van der Zee et al. (2004) ... 58
Milieuadvies

WP4.A2 Voorbeeld: MCA-criteria en definiëring van de bijbehorende klassen .. 60
WP4.A3 Het scoren van de opties na invoer van de klassen per optie .. 61
WP4.A4 Gevolgde procedure om tot een MCA-model te komen .. 63
WP4.A5 Criteria/parameters en vergelijkbare eenheden .. 65
Bijlage WP4.B Criteriatabel & Excel werkbladen ... 67
WP4.B1 Criteriatabel ... 67
WP4.B2 Lijst van stortplaatsen en MCA-rekenmodel (Excel) ... 69
WP4.B3 Haalbaarheidsanalyse: exploitatiebegrotingen (Excel) en effect-, mitigatie- en compensatieanalyse ... 71
WP4.B4 Effect-, mitigatie-, en compensatieanalyse ... 73
Voorwoord

Dit is een adviesrapport van de projectgroep Urban mining van InCompany Milieuadvies van de Open Universiteit. InCompany Milieuadvies is een virtueel milieudienstbureau waarin studenten van de Open Universiteit samenwerken aan afstudeerprojecten voor de bachelor opleiding milieu-natuurwetenschappen.

In opdracht van de Natuur en Milieufederatie Limburg (NMFL) is onderzocht of stortplaatsen in de zilvergroene natuur van het Nationaal Natuurnetwerk (NNN), voorheen de Ecologische Hoofdstructuur (EHS), gesaneerd kunnen worden met behulp van de baten van urban mining met als einddoel het herstellen van de oorspronkelijke natuurwaarden.

De vier teamleden van de projectgroep hebben elk een eigen deelrapport geschreven. Dit adviesrapport, dat aan de NMFL is uitgereikt, is opgebouwd met informatie uit alle vier de deelrapporten.

Wij willen hierbij de NMFL bedanken voor het gunnen van deze opdracht aan InCompany Milieuadvies. Daarnaast is bij de uitvoering van het onderzoek dankbaar gebruik gemaakt van informatie die is aangeleverd door de NMFL, de Katholieke Universiteit Leuven, Cranfield University, de gemeenten Heerlen, Maastricht en Venlo en de Provincie Limburg. Wij willen met name de volgende mensen bedanken voor hun input bij de totstandkoming van dit adviesrapport: Hans Heijnen, Marc Jansen, Sjoerd Kloetstra, Carolien Kroeze, Jan Lutgerink, Math Mertens, Roy Renneberg en Anne de Vreeze.

Lijst met afkortingen

<table>
<thead>
<tr>
<th>Afkorting</th>
<th>Betekenis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVI</td>
<td>Afvalverbrandingsinstallatie</td>
</tr>
<tr>
<td>AVR</td>
<td>Afvalverwerking Rijnmond, een afvalverwerkingsbedrijf</td>
</tr>
<tr>
<td>BAG</td>
<td>Basisregistraties voor Adressen en Gebouwen</td>
</tr>
<tr>
<td>BBT/BAT</td>
<td>Best beschikbare techniek/Best available technology</td>
</tr>
<tr>
<td>BREF-document</td>
<td>BAT reference document</td>
</tr>
<tr>
<td>BSA</td>
<td>Bouw- en sloopafval</td>
</tr>
<tr>
<td>Bssa</td>
<td>Besluit stortplaatsen en stortverboden afvalstoffen</td>
</tr>
<tr>
<td>EHS</td>
<td>Ecologische hoofdstructuur</td>
</tr>
<tr>
<td>ELMF</td>
<td>Enhanced landfill mining</td>
</tr>
<tr>
<td>GBA</td>
<td>Gemeentelijk Basis Administratie</td>
</tr>
<tr>
<td>GIS</td>
<td>Geografisch informatiesysteem</td>
</tr>
<tr>
<td>KBA</td>
<td>Kosten-batenanalyse</td>
</tr>
<tr>
<td>LFM</td>
<td>Landfill mining</td>
</tr>
<tr>
<td>MCA</td>
<td>Multicriteria-analyse</td>
</tr>
<tr>
<td>NIMBY</td>
<td>Not in my Backyard</td>
</tr>
<tr>
<td>NMFL</td>
<td>Natuur en milieufederatie Limburg</td>
</tr>
<tr>
<td>NNN</td>
<td>Nationaal Natuurnetwerk/Natuurnetwerk Nederland</td>
</tr>
<tr>
<td>SILG</td>
<td>Subsidieverordening inrichting landelijk gebied Limburg</td>
</tr>
<tr>
<td>Wbb</td>
<td>Wet bodembescherming</td>
</tr>
</tbody>
</table>
Samenvatting
In opdracht van de Natuur- en Milieufederatie Limburg (NMFL) is onderzocht of stortplaatsen in de zilvergroene natuur van het Nationaal Natuurnetwerk (NNN), voorheen de Ecologische Hoofdstructuur (EHS), gesaneerd kunnen worden met behulp van de baten van urban mining. Het einddoel is gericht op het herstellen van de oorspronkelijke natuurwaarden.

In dit adviesrapport wordt een antwoord gegeven op de volgende vraag:
Wat zijn de mogelijkheden om de stortplaatsen in de zilvergroene natuur van het NNN/de EHS in de provincie Limburg economisch rendabel te maken via urban mining en wat zijn - na sanering - de mogelijkheden om de oorspronkelijke natuur tot stand te brengen?

Om die vraag te beantwoorden hebben wij een project opgezet dat bestaat uit 4 werkpakketten. Elk werkpakket komt voort uit een deelvraag. De betreffende deelvragen zijn:
1. Welke stortplaatsen liggen in de Provincie Limburg binnen het Nationaal Natuurnetwerk, wat zijn de eigenschappen, wat is de samenstelling en hoe zorg je voor maatschappelijk draagvlak?
2. Wat is de stand van de techniek en welke methoden zouden er (op termijn) rendabel kunnen worden uitgevoerd bij urban mining van de stortplaatsen in de Provincie Limburg?
3. Wat zijn de oorspronkelijke natuurwaarden en de wenselijke natuurwaarden van stortlocaties in de provincie Limburg, welke economische- en milieuaspecten spelen een rol en wat zijn de mogelijkheden voor natuurherstel?
4. Wat zijn de mogelijkheden om de economische waarde of kosten van urban mining af te wegen tegen de maatschappelijke waarden van natuur en milieu? Kan de haalbaarheid van een urban mining project in Limburg worden ingeschat?

Het onderzoek richtte zich op stortplaatsen waarvan de stortactiviteiten zijn beëindigd vóór 1 september 1996. Op basis van ons onderzoek melden wij a priori dat recente informatie of een totaaloverzicht over deze stortplaatsen niet beschikbaar bleek te zijn. De meest bruikbare rapportages zijn ruim 15 jaar oud en zijn destijds ook niet gedigitaliseerd. Stortplaatsen die op en na genoemde datum nog in gebruik waren (of zelfs nu nog zijn) vallen onder de wettelijke regeling voor de nazorg bij operationele stortplaatsen. Indien stortplaatsen, die vóór 1 september 1996 zijn gesloten, niet opnieuw zijn geopend, vallen deze niet onder deze wettelijke bepalingen. Verder bleek dat 34 stortplaatsen in de zilvergroene zone liggen, waarvan er 16 geschikt werden bevonden voor analyse gericht op prioritering van sanering.

Een ander belangrijk aspect is dat de eigenaar van een voormalige stortplaats verantwoordelijk is voor de nazorg. In het Besluit aanwijzing bevoegd gezag gemeenten Wet bodembescherming zijn de gemeenten Heerlen, Maastricht en Venlo aangewezen. Bij stortplaatsen die in deze gemeenten liggen zijn zij zelf bevoegd gezag in het kader van de Wet bodembescherming. Bij de overige stortplaatsen is de Provincie Limburg bevoegd gezag.

Verder is het van belang om draagvlak te creëren bij omwonenden, actoren en andere betrokkenen om urban mining succesvol te kunnen uitvoeren. Wij bevelen dan ook aan om de belanghebbenden zo snel mogelijk in het proces te betrekken en hiervoor de sleutelfiguren uit de krachtenunderzoek te benaderen (Nillesen, 2009). De eenvoudigste optie voor het uitvoeren van urban mining in technische zin is het onbewerkt afvoeren en laten verbranden van het vrijkomende materiaal. De kosten voor afvoer kunnen worden gereduceerd door het vrijkomende materiaal te sorteren. De kosten van de inzet van sorteerinstallaties kunnen voor een deel betaald worden uit de baten van de verkoop van gewonnen metaal. Dit is o.a. afhankelijk van de kosten van de gekozen technieken, efficiëntie van de materiaalherwinning, actuele grondstofprijzen en de samenstelling van de stortplaats. Door overcapaciteit op de markt voor afvalverbranding is het omzetten van het restmateriaal in elektriciteit en warmte in een eigen kleine installatie onrendabel. Het uitsorteren van waardevolle materialen en het afvoeren van het restmateriaal naar een grootschalige afvalverbrander blijkt de meest reële optie. Sinds 1 januari 2015 wordt het storten en verbranden van afvalstoffen belast.
Het wordt aanbevolen om samen met andere belanghebbenden een verzoek te richten aan de staatssecretarissen Eric Wiebes van Financiën en Wilma Mansveld van Milieu, om voor *urban mining* een uitzondering te maken.

De oorspronkelijke natuurwaarden van de geselecteerde en geïnventariseerde stortplaatsen zijn te splitsen in een aantal hoofdcategorieën met daaronder de gewenste vegetatiesoorten. Voor alle natuurdoeltypen in de provincie Limburg zijn beheersmaatregelen noodzakelijk. Voor het realiseren van gewenste natuurdoeltypen onderzochten wij ook wat voor eisen natuurdoeltypen stellen aan de omgeving. Bij de keuze van een natuurdoeltype dient gekeken te worden naar de reeds bestaande natuur en op welke wijze het nieuwe natuurdoeltype de reeds aanwezige natuur kan versterken. Voor het saneren van de bodem zijn normkosten gevonden. Voor de inrichtingskosten zijn normen gevonden voor “droge” natuur en “natte” natuur. Het realiseren van natte natuurdoeltypen is duurder vanwege het noodzakelijke graafwerk.

Voor de mogelijkheden om de economische waarde of kosten af te wegen met de maatschappelijke waarden van natuur en milieu is gekozen voor een Multicriteria-analyse (MCA). De MCA is gebruikt om 16 stortplaatsen te prioriteren op geschiktheid voor *urban mining*. Daarbij bleken twee stortplaatsen - Trappistenveld I en II in Venlo - de hoogste prioriteit te krijgen. Om de haalbaarheid van *urban mining* beter in te schatten, is het exploitatiebegrotingsmodel op de hoogst geprioriteerde stortplaatsen toegepast. Het exploitatiebegrotingsmodel is een format dat nog aangevuld dient te worden. Op grond van beschikbare basisgegevens volgt uit het huidige exploitatiebegrotingsmodel een schatting van het netto resultaat van *urban mining*. Gemiddeld voorspelt het model een negatief resultaat, maar dat beeld wordt waarschijnlijk anders wanneer de basisgegevens worden aangevuld met specifieke en actuele stortplaats gegevens zoals de kosten van nazorg en beheer.

Tot slot blijkt dat een uitgebreide milieueffectanalyse per stortplaats wenselijk is alvorens een casestudy wordt gestart. Wij adviseren dan ook om een vervolgonderzoek uit te voeren naar de milieueffecten bij de hoogst geprioriteerde stortplaatsen en om in gesprek te gaan met de eigenaren van de stortplaatsen en andere mogelijke partners. De gesprekken zouden gericht moeten zijn op (a) het sluitend maken van de exploitatiebegroting, (b) actueel milieuvriendelijke grondwerken en (c) de resultaten van milieuvriendelijke grondwerken.
Abstract
Commissioned by the Natuur- en Milieufederatie Limburg (NMFL) (Nature and Environment Federation Limburg) we investigated the remediation of landfills in the silver-green areas of the Nationaal Natuurnetwerk (NNN) (National Nature Network) into conservation areas financed by the benefits of urban mining, with the ultimate goal of restoring the original natural values.

In this report we are searching for an answer to the following question:
What are the possibilities for making the landfills in the silver-green nature of the NNN in the Dutch province of Limburg economically viable through urban mining, and what are the possibilities - after remediation - to restore the original natural values?

To answer that question we have set up a project consisting of four work packages, each of which originates from a sub-question. The relevant sub-questions are:

1. Which landfills in the province of Limburg are located in the NNN, what are their properties, what is their composition and how can we create community support?
2. What are the best available techniques and what methods can (eventually) be used profitably for urban mining of the landfills in the province of Limburg?
3. What is the original and desirable nature at the landfill sites in the province of Limburg, which economic and environmental aspects are to be considered and what are the possibilities for ecological recovery?
4. What are the possibilities for comparing the economic values or costs of urban mining with the social values of nature and the environment. Is it possible to estimate the feasibility of an urban mining project in Limburg?

The research focused on landfills where the landfill activities had been terminated before 1st of September 1996. On the basis of our research we mention a priori that recent information or a clear overview of data of the landfills appeared to be unavailable. The most useful reports are over 15 years old and were not digitized. Landfills that were in use on or after the mentioned date (or even at this moment) are covered under the legislation of the aftercare of operational landfills. If landfills from before the 1st of September 1996 are closed and not reopened, they are not covered by this legislation.

We also found that 34 landfills are located in the silver-green zone, of which 16 landfills were found suitable for analysis focused on prioritisation of remediation.

Another important aspect is that the owner of a former landfill is responsible for the aftercare. The Dutch Government Decree aanwijzing bevoegd gezag gemeenten Wet bodembescherming (designating municipalities who have authority under the Soil Protection Act) the municipalities Heerlen, Maastricht and Venlo are also designated as having authority. When landfills are located in these municipalities they themselves are the designated authority under the Soil Protection Act. For the remaining landfills the province of Limburg is the designated authority.

Urban mining can be implemented as part of a remediation plan under the Dutch Soil Protection Act. Market participants should bear 50% of the costs of soil remediation. This 50% can possibly be generated from the sale of raw materials or energy from the processed waste of the landfill. The other 50% would be financed by resources from the Subsidieverordening Inrichting Landelijk Gebied Limburg 2015 (Subsidy Regulation Rural Areas Limburg 2015) (Provincie Limburg, 2015). It is expected that a new environmental law (Omgevingswet) will be introduced in the Netherlands in 2018. With this environmental law the Dutch government wants to simplify and merge the current rules. This means that there will be a new set of financial, legal and organizational instruments. How this law will unfold is still unclear.

Furthermore, it is important to create support among local residents, the operational actors and other stakeholders to implement urban mining successfully. Therefore we recommend to involve the stakeholders as soon as possible in the process and to contact the key persons from the force-field analysis (Nillesen, 2009).

The simplest option for the implementation of urban mining in a technical sense is the unprocessed disposal of the excavated waste by incineration in an existing waste incinerator. Sorting the excavated material can reduce the costs of disposal. The costs of deploying sorting facilities may be partly covered by the revenues from the sale of extracted metals. This also depends on the costs of the used techniques, the efficiency of the material recovery, current commodity prices and the composition of the landfill. Because of overcapacity in the market for waste incineration the conversion of the leftover waste into electricity and heat in a purposely build small waste incinerator is unprofitable. The sorting of valuable materials and the elimination of the leftover waste in a large-scale waste incinerator appears to be the most realistic option. Since the 1st of January 2015 landfiling and incineration of wastes is taxed in the Netherlands. We recommend...
sending a request together with other stakeholders to the State Secretaries of Finance Eric Wiebes and Wilma Mansveld of Environment, to make an exception for urban mining.

The original nature at the selected and researched landfill sites can be divided into several main categories and the desired vegetation types. For all types of nature in the province of Limburg management is necessary. To achieve the desired nature types we also examined what requirements the nature types pose to their environment. When choosing a nature type the existing nature should be considered and how the new nature type can strengthen the existing nature. For the remediation of soil standard costs were found. For redevelopment costs standards were found for "dry" nature and "wet" nature. Realizing wet nature types is more expensive because of the necessary excavation work.

For the possibility of weighing economic value or costs equally with social values of nature and the environment a multi-criteria analysis (MCA) is used. The MCA is used to prioritize 16 landfills on their suitability for urban mining. It showed that two landfills - Trappistenveld I en II in Venlo - have the highest priority.

To better estimate the feasibility of urban mining the operating budget model is used for the landfills with the highest priority. The operating budget model is a format that still has to be completed. From the current operating budget model we can conclude, on the basis of the available basic data, an estimate of the net result of urban mining. On average, the model predicts a negative result, but that picture is likely different when the basic data are supplemented by specific and current landfill data such as the cost of aftercare and management.

Finally, it appears that a comprehensive environmental impact analysis is desirable for each landfill before a case study is started. We therefore recommend to start additional research into the environmental impact at the highest priority landfills and to enter into a dialogue with the owners of the landfills and other potential partners. The talks should focus on (a) balancing the operating budget, (b) up-to-date environmental research in / around the highest priority landfills and (c) the results of environmental research.
1. Inleiding

1.1 Achtergrondinformatie

Dit rapport beschrijft de uitvoering van een opdracht die is geformuleerd door de Natuur en Milieufederatie Limburg (NMFL), namelijk om voormalige Limburgse stortplaatsen systematisch te onderzoeken.

Deze opdracht komt voort uit de volgende twee gedachtengangen:

1. Om van huisvuil en ander afval af te komen was het storten van afval gedurende een groot deel van de twintigste eeuw de gebruikelijke methode (Wikipedia.org, 2014). Zo zijn veel natuurlijke en kunstmatige laagtes in het landschap in het verleden opgevuld met afval, waardoor ook waardevolle natuur is verdwenen. Veel van deze stortplaatsen veroorzaken daarnaast milieuproblemen. Ze lekken o.a. methaan naar de atmosfeer en zware metalen naar de bodem (Frändegård, Krook et al. 2013).

2. Veel stortplaatsen bevatten afval waar tegenwoordig met nieuwe technieken waardevolle materialen uit zijn te halen. In oude stortplaatsen werd ongescheiden en ongesorteerd afval gestort. Stortplaatsen en andere afvalbergingen bevatten bijvoorbeeld meer dan 30% van de wereldvoorraad aan koper, aanzienlijke hoeveelheden brandbaar materiaal en materiaal dat geschikt is als bouwstof (Frändegård, Krook, Svensson, & Eklund, 2013). Door toenemende schaarste aan grondstoffen wordt het aantrekkelijk om materialen terug te winnen voor hergebruik of om te zetten in energie (De Wijk, 2012; Elger, 2013; Kaartinen, Sormunen, & Rintala, 2013). Volgens Quaghebeur et al. (2013) is de inhoud per stortplaats echter verschillend door verschillende factoren die in het verleden hebben gespeeld. Wij kunnen daarbij denken aan de periode waarin de stortplaats in gebruik is geweest of aan de vraag hoelang deze stortplaats al is afgesloten. De wijze waarop de stortplaats is ingebed in grond, grondwater en mogelijke afdichting heeft betrekking op (a) de staat waarin wij de afvalstoffen kunnen aantreffen en (b) hun waarde. Daarnaast is het van belang om het wettelijk kader en de stand van de techniek voor recycling en scheidings van afval hiervoor te achterhalen.

De NMFL schat in dat urban mining (het terugwinnen van materialen uit afval) een win-winsituatie kan creëren voor de omgeving, natuur en betrokken ondernemers. Als drijfveer voor ondernemers kan worden gedacht aan het toekomstig tekort aan grondstoffen en energie. Uit milieuopgave is het ook wenselijk om risicovolle stortplaatsen te saneren. Na het opruimen van een stortplaats kan deze locatie vervolgens worden omgevormd naar waardevolle natuur als onderdeel van het Nationaal Natuurnetwerk (NNN), voorheen beter bekend als de ecologische hoofdstructuur de (EHS). Het NNN/de EHS in Limburg is opgebouwd uit een goudgroene zone, een zilvergroene zone en een bronsgroene zone. De goudgroene zone bestaat uit natuurdoeltypen die van eindig belang zijn voor de instandhouding van kenmerkende natuurdoeltypen in ons land. Binnen de zilvergroene natuurzone staat het benutten van kansen voor natuur en landschap centraal. De zilvergroene natuurzone ondersteunt de functionaliteit en effectiviteit van de goudgroene natuurzone. De bronsgroene landschapszone omvat de landschappelijk waardevolle beekdalen en bufferzones rond bestaande natuurgebieden met de daarin aanwezige (extensievere) landbouwgebieden, monumenten, kleinere landschapselementen, waterlopen en dergelijke (Provinciale Staten van Limburg, 2014).

Genoemde opdracht van de NMFL heeft geleid tot onze studie, die zich richtte op de mogelijkheden voor urban mining van stortplaatsen in de zilvergroene zone van het NNN/de EHS. Voordat een casestudy kan worden uitgewerkt (in een eventueel vervolgonderzoek) hebben wij eerst gefocussd op prioritering van stortplaatsen. In Limburg liggen er namelijk bijna negenhonderd (Provinciale Staten van Limburg, persoonlijke communicatie, 15 februari 2015). Deze stortplaatsen zullen niet allemaal even geschikt zijn voor urban mining, omdat veel factoren (die wij noemen of uitwerken in dit rapport) een rol spelen.

1.2 Probleem

Door de invloed van de mens zijn de oorspronkelijke natuurdoeltypen zeldzaam geworden in Limburg. Met natuurdoeltypen bedoelen wij natuurdoeltypen zoals gedefinieerd in het Handboek Streefbeeldten voor Natuur en Water in Limburg (Krekels, Peeters, & Brouw, 2003) Als natuur- en milieouorganisatie zou NFML deze oorspronkelijk natuurdoeltypen ook in de zilvergroene zone willen realiseren door stortplaatsen op te ruimen en de natuur in de zilvergroene zones van het NNN/de EHS te herstellen. Om de oorspronkelijke natuurdoeltypen te kunnen realiseren is het van belang eerst uit te zoeken welke natuurdoeltypen dit dan waren en welke natuur- en milieueisen deze
Milieuadvies

natuurdoeltypen stellen aan hun omgeving. Daarnaast is nog onvoldoende bekend over de stortplaatsen in Limburg.

Het overzicht dat bekend is bij de Provincie Limburg is onvolledig en de stortplaatsen die liggen in de gemeenten Maastricht, Heerlen en Venlo ontbreken in dit overzicht. Uit ons onderzoek bleek al gauw dat een overzicht van de stortplaatsen bij deze gemeenten niet direct opvraagbaar is. Bij de gemeenten is er geen recente informatie en geen totaaloverzicht, voor zover als dit voor ons inzichtelijk is. Uit het overzicht van de Provincie Limburg en de informatie van de NMFL blijkt dat circa 250 van de 890 stortplaatsen in Limburg zijn gelegen in het NNN/de EHS. Vaak is de stortplaats niet onder milieubeheer of toezicht gesteld en is de omgeving onder invloed van de metalen en andere verontreiniging in de grond. Er is dus veel potentieel, zowel voor natuurherstel, als voor herwaardering van de grondstoffen in de stortplaatsen door het toepassen van de beste beschikbare technieken (BBT) (Kenniscentrum InfoMil, 2015a). Om geld te genereren uit urban mining is er gezocht naar de meest geschikte technieken. Hiervoor zijn onder meer de kosten en baten in beeld gebracht.

Urban mining lijkt een prachtige technische oplossing voor een lelijk probleem, maar met alleen techniek zijn wij er niet. Milieuproblemen hebben namelijk per definitie ook een maatschappelijk aspect in zich. De neveneffecten (Destentor.nl, 2013; RTV Oost, 2014) van stortplaatsen kunnen namelijk ook als milieuprobleem gezien worden en bij het opruimen moet het niet zo zijn dat nieuwe of ernstigere milieuproblemen ontstaan.

Belangrijke voor- en nadelen - economisch, ecologisch en sociaal - dienen op een gepaste manier te worden afgewogen om te bepalen welke stortplaats het meest kansrijk is om het doel te bereiken van milieu- en natuurwinst. In dit project wordt onderzocht wat dan precies die gepaste manier is.

1.3 Vraagstelling

In overleg met de opdrachtgever zijn wij tot de volgende definitieve vraagstelling gekomen:

Wat zijn de mogelijkheden om de stortplaatsen in de zilvergroene zones van het NNN/de EHS c.q. Ecologische Hoofdstructuur (EHS) in de provincie Limburg economisch rendabel te maken via urban mining en wat zijn - na sanering - de mogelijkheden om de oorspronkelijke natuur te herstellen?

Deelvragen zijn:

1. Welke stortplaatsen liggen in de Provincie Limburg binnen het Nationaal Natuurnetwerk, wat zijn de eigenschappen, wat is de samenstelling en hoe zorg je voor maatschappelijk draagvlak?
2. Wat is de stand van de techniek en welke methoden zouden er (op termijn) rendabel kunnen worden uitgevoerd bij urban mining van de stortplaatsen in de Provincie Limburg?
3. Wat zijn de oorspronkelijke natuurwaarden en de wenselijke natuurwaarden van stortlocaties in de provincie Limburg, welke economische- en milieuaspecten spelen een rol en wat zijn de mogelijkheden van natuurherstel?
4. Wat zijn de mogelijkheden om de economische waarde of kosten van urban mining af te wegen tegen de maatschappelijke waarden van natuur en milieu? Kan de haalbaarheid van een urbanningproject in Limburg worden ingeschat?

1.4 Doelstelling

Op basis van de geformuleerde vragen hebben wij de volgende doelen benoemd: (a) Het maken van een inventarisatielijst van storten in Limburg in het NNN/de EHS en (b) een flexibel model, inclusief toelichting, dat helpt bij de prioritering voor sanering van stortplaatsen. Het model is gebaseerd op multicriteria-analyse (MCA) waarbij naast natuurvoordeel ook financiële informatie & maatschappelijk belang wordt meegewogen om tot de uiteindelijke prioritering te komen. Als input hiervoor moeten wij de kosten en baten van urban mining in beeld brengen. Uitgangspunten hierbij zijn de actuele stand van de techniek en een wetenschappelijke onderbouwing aan de hand van de beschikbare literatuur. Vervolgens brengen wij in beeld wat de wenselijke natuurdoeltypen zijn voor voormalige stortplaatsen in de zilvergroene zone van het NNN/de EHS in de provincie Limburg en wat de kosten zijn die met het herstel van deze natuurwaarden zijn gemoeid.

Het onderzoek is uitgevoerd om beter in te kunnen schatten of het doel van de opdrachtgever te verwezenlijken is. Dat doel is natuurontwikkeling in de zilvergroene natuur van het NNN/de EHS op plaatsen waar door urban mining stortplaatsen zijn opgeruimd, waarbij opbrengst is gegenereerd voor de genoemde natuurontwikkeling.
1.5 Kenmerken (criteria) resultaten
De in dit onderzoek verzamelde gegevens omvatten onder meer een overzicht van de stortplaatsen binnen de zilvergroene zone van het NNN/de EHS van de Provincie Limburg, als ook eigenschappen en samenstelling van deze stortplaatsen. Daarnaast geven wij een overzicht van de best beschikbare technieken (BBT) voor urban mining. Ook geven wij een beschrijving van de oorspronkelijke of wenselijke natuurdoeltypen per deelgebied in de zilvergroene zone van het NNN/de EHS in de provincie Limburg, verantwoordelijkheid natuurherstel, kosten natuurherstel en mogelijk beschikbare subsidies.

De resultaten bevatten een flexibel/aanpasbaar wegingsmodel en een prioriteitenlijst van de te saneren stortplaatsen in het NNN/de EHS van de provincie Limburg. Het wegingsmodel en het exploitatiebegrotingsmodel zijn eenvoudig aan te vullen of aan te passen met andere stortplaatsen waarvan basisgegevens beschikbaar zijn.

1.6 Randvoorwaarden
- Dit onderzoek is gericht op het verkennen van de mogelijkheden van urban mining en vanwege de beperkt beschikbare tijd niet gericht op de daadwerkelijke uitvoering.
- De gegevens voor het uitvoeren van de onderzoeken waren afkomstig uit de verschillende werkpakketten, die wij hebben samengesteld om deelvragen te beantwoorden en doelen te bereiken. Hier is sprake van een onderlinge afhankelijkheidsrelatie zoals in figuur 1 is weergegeven. Met werkpakket 1 verzorgen wij een overzicht van de stortplaatsen, met werkpakket 2 beschreven wij de technieken, met werkpakket 3 de overzichten voor natuurdoeltypen/natuurherstel en met werkpakket 4 probeerden wij te komen tot een model ten behoeve van de prioritering & haalbaarheid, waarbij wij opmerken dat het resultaat van activiteiten binnen pakket 4 afhankelijk is van de input van alle werkpakketten.
- Gezien het grote aantal stortplaatsen in Limburg, is een gerichte analyse van individuele stortplaatsen niet mogelijk binnen de scope van dit onderzoek. De variabelen van eventueel naderhand benodigde grondsaneringen vallen daarom eveneens buiten het bereik van dit onderzoek. Voor het opstellen van dit onderzoeksrapport is gebruik gemaakt van de beschikbare literatuur en beschikbare informatie van benaderde kennisinstituten.
Afbeelding 1: *Rode pijlen:* de gegevens van de stortplaatsen (WP1) is input voor het uitwerken van WP2 en WP3. De resultaten uit de literatuurstudie van WP3, indicaties kosten natuurherstel en gewenste natuurwaarden worden ook ingebracht in de prioriteringsanalyse & haalbaarheidsanalyse, zie de *paarse pijl.* *Blauwe pijlen:* resultaten en belangrijke parameters uit de literatuurstudie van WP2 en WP3 worden ingebracht bij WP4 prioriteringsanalyse & haalbaarheidsanalyse. Alle informatie in het adviesrapport vindt zijn oorsprong in één van de werkpakketten, zoals de zwarte pijlen duiden.
2. Methode
In dit hoofdstuk wordt in detail de methode van onderzoek beschreven, niet alleen om de reproduceerbaarheid te waarborgen, maar ook om anderen in staat te stellen een prioriteitenlijst van geschikte stortplaatsen voor urban mining te genereren met het beschreven model. Het onderzoeksmodel voor dit onderzoek is gebaseerd op het algemene onderzoeksmodel van verschuren en Doorwaard (Verschuren, 2007). Grotendeels is gebruik gemaakt van literatuuronderzoek, dat wordt beschreven in §2.1. In §2.2 volgt een beschrijving van de actoren in het onderzoek, in §2.3 het rekenwerk dat is toegepast in de modellen en tot slot de methode die is toegepast voor het bepalen van wegingsfactoren van de MCA.

2.1 Literatuuronderzoek
De criteria voor het verkrijgen van inzicht in de theorie (stap 1 van het onderzoeksmodel) zijn in belangrijke mate verkregen door literatuuronderzoek. Er is literatuuronderzoek uitgevoerd naar:
- De stortplaatsen, actoren en contactpersonen binnen de Provincie Limburg;
- Rapporten, beleidsdocumenten en studies naar de stortplaatsen in de Provincie Limburg, de samenstelling van stortpakketten, beschikbare kengetallen en andere benaderingen om de inhoud van stortplaatsen te valideren;
- Europese en Nederlandse afvalwetgeving in relatie tot stortplaatsen;
- Eventueel beschikbare stimuleringsbijdragen (subsidie);
- Europese en Nederlandse wet- en regelgeving met betrekking tot de BBT voor sorteerininstallaties en afvalverbrandingsinstallaties;
- Rapporten, beleidsdocumenten en studies met betrekking tot afvalverwerking;
- Technieken voor sorteerininstallaties en afvalverbrandingsinstallaties;
- Oorspronkelijke natuurdoeltypen in Limburg en huidige gewenste Natuurdoeltypen in Limburg;
- Natuur- en milieueisen per gewenst natuurdoeltype;
- Normkosten voor het inrichten van een ha. natuurgebied;
- Mogelijke alternatieve grondaanwending binnen de zilvergroene zone van het NNN/de EHS;
- Definitie van zilvergroene en goudgroene natuur binnen het NNN/de EHS;
- Prioriteringsmethoden, zoals kosten-batenanalyse (KBA) en MCA;
- Bestaande modellen voor het selecteren van stortplaatsen voor urban mining.

Via reguliere zoekopdrachten in niet-wetenschappelijke zoekmachines, de opdrachtgever en de Katholieke Universiteit Leuven zijn sites gevonden als elfm.eu en elfm.be waar verschillende actuele wetenschappelijke publicaties zijn verzameld over enhanced landfill mining (ELM) (De Vocht & Descamps, 2011). Daarnaast is voor het literatuuronderzoek gebruik gemaakt van Sciencedirect, Google, Google Scholar en de digitale bibliothek van de Open Universiteit met toegang tot wetenschappelijke artikelen. Er is gezocht met diverse termen, zowel in het Engels als in het Nederlands. Door het combineren van synoniemen en combinaties van termen met de OR en AND zoekoperatoren werden relevante artikelen gevonden. Daarnaast zijn websites over afvalstortplaatsen, de samenstelling van stortplaatsen, urban mining en landfill mining (LFM) geraadpleegd.

Het inzicht in de theorie (stap 1 in het onderzoeksmodel) is tevens verkregen door een onderzoek naar landelijke regelgeving zoals het Landelijk Afvalbeheerplan (LAP2), beschikbare technieken voor urban mining, natuurdoeltypen en prioriteringsmethoden. Daarop volgend het inzicht in de wijze waarop het onderzoek het best kon worden uitgevoerd (stap 2 van het onderzoeksmodel). De onderzoeksoptiek (stap 3 van het onderzoeksmodel) omvat het verkregen inzicht en het kader voor de rapportage. Het onderzoeksobject (stap 4 van het onderzoeksmodel) zijn de stortplaatsen in de zilvergroene zones, de technieken voor het verwerken van het bij urban mining vrijkomende materiaal, de gewenste natuurdoeltypen en geschikte prioriteringsmethoden. Met behulp van het verkregen inzicht in de theorie en de achtergrondinformatie (stap 1+2+3+4) en door het uitvoeren van de analyse uit de onderzoeksoptiek is vervolgens dit adviesrapport opgemaakt.

2.2 Actoren
De NMFL is in dit onderzoek de belangrijkste acteur als initiatiefnemer en opdrachtgever voor het onderzoek Groen voor Afval. Directeur H. Heijnen en medewerker Natuur en Ruimtelijke Ordening R. Rennesberg treden in dit op als opdrachtgever. In de opdracht en uit de gesprekken blijkt dat de NMFL de stortplaatsen in de zilvergroene natuur van het NNN/de EHS op wil ruimen en zij op zoek zijn naar innovatieve technieken om het restmateriaal om te zetten in energie. Het uiteinde doel van de NMFL is om met de opbrengsten uit urban mining de oude stortplaatsen te saneren en als natuurgebied in te richten. De NMFL is echter geen ‘probleemhouder’ maar neemt - als voorvorder van het NNN/de EHS in Limburg - hierin het voortouw.
De eigendomssituatie speelt een rol bij urban mining. Veel stortplaatsen zijn het eigendom van gemeenten, omdat deze vroeger vaak verantwoordelijk waren voor de afvalverwijdering. Er zijn echter ook oude stortplaatsen in het bezit van particulieren en door de aankoop van terreinen zijn er ook terreinbeheerende instanties eigenaar van stortplaatsen. Bij voormalige stortplaatsen is de eigendom vaak verantwoordelijk voor de nazorg. Omdat voormalige stortplaatsen worden beschouwd als een geval van ernstige bodemverontreiniging, vallen activiteiten op voormalige stortplaatsen onder de provinciale bevoegdheden op basis van de Wet bodembescherming (Wbb). Daarnaast moet in het onderzoek en bij een eventuele uitvoering ook rekening gehouden worden met andere actoren en hun wensen en verwachtingen. Het openen van een stortplaats dicht in de buurt van een woonwijk zou bijvoorbeeld op verzet kunnen stuiten van omwonenden, bijvoorbeeld wanneer onduidelijkheid bestaat over de mogelijke gevaren. Andere betrokkenen zijn (1) bedrijven, (2) afvalverwerkers, (3) mogelijke leveranciers van technieken om het vrijkomende materiaal te sorteren, (4) mogelijke leveranciers van technieken om het restmateriaal om te zetten in energie, (5) grote warmtegebruikers in de provincie Limburg, (6) het Ministerie van Infrastructuur en Milieu (Kenniscentrum InfoMil), in verband met de technische voorwaarden waar een installatie aan moet voldoen om een vergunning te krijgen en (7) Rijkswaterstaat Leefomgeving met betrekking tot de uitvoering van het landelijke afvalbeheerplan (LAP).

Vanuit het landelijk beleid zijn momenteel geen ontwikkelingen voor de herontwikkeling van voormalige stortplaatsen (Provincie Gelderland, 2011). Om aan de benodigde literatuur te komen is contact opgenomen met stakeholders, ervaringsdeskundigen van de Katholieke Universiteit Leuven en de Cranfield University, private partijen, de Provincie Limburg, de gemeenten Maastricht, Heerlen en Venlo, Bosgroep Zuid-Limburg te Heeze en Universiteit Wageningen. Jaap van Raffe van de Universiteit Wageningen adviseerde het Normenboek voor het Inrichten van Natuurdooltypen (Raffe & Jong, 2014). Dit handboek is echter te detaillistisch en meer geschikt voor een casestudie. Van desk recherche is een rapport gevonden (Silvis, Schrijver, Rijk, & Gaaff, 2013) en normen voor het realiseren van een stortplaats voor voormalige stortplaatsen direkte mate van Marc Jansen, een InCompany Milieuadvies medewerker die reeds ervaring heeft opgedaan met MCA in een ander project en een MCA-expert van de Open Universiteit: hoogleraar Carolien Kroeze. Marc Jansen adviseerde om bij de keuze voor een geschikte MCA-techniek vooral te kijken naar wat onderzoekers doen in het werkveld. Op basis daarvan kan dan vrij vlot een geschikt model gekozen worden voor het onderzoek. Halverwege dit onderzoeksproject is de NMFL gevraagd onze lijst van criteria te beoordelen en aan te vullen. Op dat moment bleek dat de NMFL meer geïnteresseerd was in een MCA-light. De NMFL heeft behoefte aan een exploitatiebegroting waaruit blijkt of een casestudy haalbaar is verkies de exploitatiebegroting boven het uitwerken van een uitgebreid MCA-model. Op basis van dit verzoek is de haalbaarheidsanalyse aan dit onderzoek toegevoegd. Hoe wij betekenis hebben gegeven aan het begrip MCA-light wordt beschreven in hoofdstuk 3 (Resultaten).

2.3 Rekenwerk voor MCA en exploitatiebegroting

Bij de MCA-methode is enig rekenwerk aan de orde. Criteriumcategorieën en criteria vormen de maatstaven waarlangs opties worden gemeten om te zien hoe goed ze het bepaald doel bereiken. Het scoren van opties is een noodzakelijke stap in de MCA, omdat het daardoor mogelijk wordt om zeer uiteenlopende criteria toch met elkaar te kunnen vergelijken. Daarvoor is het niet per se noodzakelijk dat alle criteria (a) op een ordinaire meetschaal zijn bepaald en/of (b) met een vergelijkbaar aantal klassen zijn gedefinieerd zoals in tabel 1. De hoogste klasse die werkelijk is uitgedeeld per criterium dient gescoord te worden op 100%, de laagste op 0%. De waarden ertussen kunnen vervolgens lineair worden bepaald. Dit wordt ook wel relative scaling genoemd. Deze manier van scoren wordt beschreven in de MCA Manual van het Department for Communities and Local Government (2009).
Score = klasse criterium / hoogste klasse gegeven voor een criterium onder alle opties

(1.1)

Na het scoren van alle opties kan de gewogen sommering bepaald worden door – per criterium – de score te vermenigvuldigen met de wegingsfactor. Vervolgens worden deze waarden per criterium gesommeerd om de gewogen sommering te bepalen. In tabel 1 is een voorbeeld uitgewerkt met drie opties en drie criteria. Zie bijlage WP4.B2, bijvoorbeeld cel BK5.

Tabel 1: Uitgewerkt voorbeeld voor de berekening van een gewogen sommering.

<table>
<thead>
<tr>
<th>Opties</th>
<th>Criterium 1</th>
<th>Criterium 2</th>
<th>Criterium 3</th>
<th>Gewogen sommering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klasse</td>
<td>Score</td>
<td>Klasse</td>
<td>Score</td>
</tr>
<tr>
<td>Optie 1</td>
<td>1</td>
<td>50%</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Optie 2</td>
<td>2</td>
<td>100%</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Optie 3</td>
<td>1</td>
<td>50%</td>
<td>1</td>
<td>33,3%</td>
</tr>
<tr>
<td>Wegingsfactor</td>
<td>0,25</td>
<td>0,25</td>
<td>0,50</td>
<td></td>
</tr>
</tbody>
</table>

De scores voor de opties onder criterium 1, 2, 3 zijn berekend volgens formule 1.1. De gewogen sommering voor optie 1 is als volgt berekend: 0,25 * 50% + 0,25 * 0% + 0,50 * 0% = 0,125. Dit is in overeenstemming met formule 1.2.

Gewogen sommering zonder hiërarchie

\[\text{Gewogen sommering zonder hiërarchie}^{10} = \text{SOM}(\text{score criterium 1} \times \text{wegingsfactor criterium 1} + \text{score criterium 1.n} \times \text{wegingsfactor 1.n}) \]

(1.2)

Gewogen sommering met hiërarchie

\[\text{Gewogen sommering met hiërarchie} = \text{SOM}(\text{score criterium 1.1} \times \text{wegingsfactor criterium 1.1} + \text{score criterium 1.1.n} \times \text{wegingsfactor criteriumcategorie 1} + \text{SOM}(\text{score criterium 2.1} \times \text{wegingsfactor criterium 2.1} + \text{score criterium 2.1.n} \times \text{wegingsfactor criteriumcategorie 2}} + \text{SOM}(\text{score criterium 3.1} \times \text{wegingsfactor criterium 3.1} + \text{score criterium 3.1.n} \times \text{wegingsfactor criteriumcategorie 3}) \]

(1.3)

De algemene formule voor de exploitatiebegroting: Opbrengsten – kosten = resultaat.

(1.4)

Voor de kosten en opbrengsten is er steeds een interval met de minimaal en maximaal te verwachten kosten en opbrengsten. Deze zijn gebaseerd op cijfers uit de gevonden literatuur. Hieruit kan het gemiddelde worden bepaald. In tabel 2 is hiervan een voorbeeld gegeven.

Tabel 2: Uitgewerkt voorbeeld exploitatiebegroting

<table>
<thead>
<tr>
<th>Scenario’s(^{11})</th>
<th>Minimaal resultaat</th>
<th>Maximaal resultaat</th>
<th>Gemiddeld resultaat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subtotaal</td>
<td>Subtotaal</td>
<td>Subtotaal</td>
</tr>
<tr>
<td>Opbrengsten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opbrengst uit 1(^{12})</td>
<td>€ 1000</td>
<td>€ 2000</td>
<td>€ 1500</td>
</tr>
<tr>
<td>Opbrengst uit 2</td>
<td>€ 1000</td>
<td>€ 2000</td>
<td>€ 1500</td>
</tr>
<tr>
<td>Kosten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kostenpost 1(^{13})</td>
<td>€ 900</td>
<td>€ 700</td>
<td>€ 800</td>
</tr>
<tr>
<td>Kostenpost 2</td>
<td>€ 1600</td>
<td>€ 800</td>
<td>€ 1200</td>
</tr>
<tr>
<td>Resultaat</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{10}\) Zonder hiërarchie wil zeggen dat criteria niet gecategoriseerd zijn onder criteriumcategorieën.

\(^{11}\) In feite zijn drie scenario’s uitgewerkt. In het minimale scenario wordt uitgegaan van de minimaal te verwachten opbrengst uit alle bronnen en maximale kosten uit alle kostenposten. Bij het maximum scenario is dat juist andersom waardoor het maximale resultaat wordt geschetst. Het gemiddelde van die twee is het meest waarschijnlijk en die vormt dan ook het scenario waarmee hier verder zal worden gewerkt.

\(^{12}\) Bijvoorbeeld opbrengst uit gewonnen energie.

\(^{13}\) Bijvoorbeeld de kostenpost grondsanering.
De NMFL wil graag een exploitatiebegrotingsmodel waar basisgegevens kunnen worden ingevoerd om het resultaat uit te rekenen. Daarom worden de opbrengsten en kosten berekend op grond van basisgegevens. De voornaamste basisgegevens zijn: oppervlakte stortplaats, inhoud stortplaats en samenstelling stortplaats.

In combinatie met informatie uit de werkpakketten moet daarmee een inschatting kunnen worden gemaakt van elke soort kosten en opbrengsten.

Een voorbeeld voor opbrengst uit hergebruik van ferrometalen

Uit WP2 weten wij dat gemiddeld 3% van het stortmateriaal uit ferrometalen bestaat. Wij weten uit dat werkpaquet eveneens dat ferrometalen 120-130 euro/ton opleveren. Wij hebben een inschatting gemaakt van het soortelijk gewicht van stortafval om te bepalen hoeveel ton een kuub afval weegt. Die gegevens samen maken het mogelijk om uit te rekenen wat de verwachte opbrengst is uit herwonnen ferrometalen voor een willekeurige stortplaats.

Van basisgegeven naar berekende details over de stortplaats naar opbrengst:
1. Inhoud stortplaats * soortelijk gewicht stortafval = totale gewicht stortafval
2. Totale gewicht stortafval * gemiddeld percentage ferrometalen = verwachte totale gewicht ferrometalen
3. Verwachte totale gewicht ferrometalen * minimale opbrengst per ton = minimale opbrengst ferrometalen uit stortplaats
4. Verwachte totale gewicht ferrometalen * maximale opbrengst per ton = maximale opbrengst ferrometalen uit stortplaats
5. Het gemiddelde van die laatste twee is de verwachte opbrengst uit recyclebare ferrometalen uit de stortplaats.

Naast dit ene voorbeeld worden hier niet alle berekeningen uitputtend besproken. In plaats daarvan worden de gemaakte berekeningen in de Excel bijlage (WP4.B3) van toelichting voorzien door middel van opmerkingen in rijen/cellen die het betreft. Wanneer een cel is voorzien van zo’n opmerking is die gemarkeerd met een rood driehoekje: , dan wordt de opmerking zichtbaar wanneer je op het rode driehoekje gaat staan met de muis. Zie ook deze screencast:

2.4 Bepaling wegingsfactoren MCA

De wegingsfactoren zijn door de auteur van het WP4-rapport bepaald. Ze zijn daarna voorgelegd aan het team van onderzoekers. De wegingsfactoren zijn in concept aan de NMFL voorgelegd met het verzoek een eigen weegset te bepalen. De weegset van de NMFL is vervolgens geconsolideerd en opnieuw beoordeeld door alle onderzoekers en de NMFL. Er zijn tien criteria voor de 'MCA-light' benoemd. In het goedgekeurde model zijn de gemaakte opmerkingen in de cel van de betreffende weegfactor opgenomen (zie bijlage WP4.B2)

Tabel 3 bevat een voorbeeld van twee weegsets gerelateerd aan criteria. Een weegset is ongewogen, de andere gewogen. De ongewogen weegset is praktisch nuttig, omdat daarmee snel zichtbaar is welke som van factoren in totaal 1 moet bedragen en hoeveel een weegfactor boven of onder de normale weging ligt.

<table>
<thead>
<tr>
<th>Criteriumcategorie 1 (CC1)</th>
<th>Criteriumcategorie 2 (CC2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongewogen hiërarchische weegset</td>
<td></td>
</tr>
<tr>
<td>Weegfactor CC1 en 2</td>
<td>0,5</td>
</tr>
<tr>
<td>Weegfactor C</td>
<td>0,5</td>
</tr>
<tr>
<td>Gewogen hiërarchische weegset (bijvoorbeeld door de onderzoekers)</td>
<td></td>
</tr>
<tr>
<td>Weegfactor CC1 en 2</td>
<td>0,4</td>
</tr>
<tr>
<td>Weegfactor C</td>
<td>0,1</td>
</tr>
</tbody>
</table>
3. Resultaten
In dit hoofdstuk zijn de resultaten uiteengezet van het onderzoek. In dit adviesrapport is een prioriteitenlijst van stortplaatsen opgenomen. Met de input van de NMFL is een sortering gemaakt op basis van de samen opgestelde en geconsolideerde weegset. Na de eerste review is door de NMFL gevraagd om (a) een exploitatieberegtingsmodel in Excel en (b) een effect-, mitigatie- en compensatieanalyse om de feitelijke haalbaarheid van urban mining beter in te kunnen schatten. Een eerste aanzet daartoe is toegevoegd aan dit rapport in §3.6. Dit hoofdstuk is gestructureerd op basis van de deelvragen uit §1.3.

3.1 Stortplaatsen in de zilvergroene natuur
Welke stortplaatsen liggen in de Provincie Limburg binnen het Nationaal Natuurnetwerk, wat zijn de eigenschappen, wat is de samenstelling?

3.1.1 Stortplaatsen binnen het Nationaal Natuurnetwerk
Het overzicht van stortplaatsen in de Provincie Limburg omvat 890 stortplaatsen en is als bijlage WP4.B2 bij dit onderzoeksrapport gevoegd. Niet alle stortplaatsen in Limburg zijn voor dit onderzoek relevant. De opdrachtgever heeft namelijk als minimale voorwaarden dat de stortplaatsen in de zilvergroene zone liggen van het NNN/de EHS. Op de lijst van 890 stortplaatsen staan ook stortplaatsen die reeds gesaneerd zijn (code 6); die worden buiten beschouwing gelaten. Daarnaast moet informatie beschikbaar zijn in de vorm van een rapport bij de provincie/gemeenten. Op basis van deze voorwaarden is het aantal stortplaatsen - dat van belang is voor deze studie - snel gereduceerd. In tabel 4 is het effect te zien van deze minimale voorwaarden op het aantal stortplaatsen dat relevant blijft. In tabel 5 zijn de overgebleven 16 relevante stortplaatsen opgenomen inclusief de voornaamste details.

Tabel 4: Criteria “minimale voorwaarden” om interessant te zijn voor het onderzoek (zie ook bijlage WP4.B2).

<table>
<thead>
<tr>
<th>Criterium</th>
<th>Meetschaal</th>
<th>Eenheid</th>
<th>Opmerking</th>
<th>Aantal stortplaatsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligt in zilvergroene zone van het NNN/de EHS</td>
<td>Nominaal</td>
<td>1 of 0</td>
<td>1 = waar</td>
<td>890 stortplaatsen</td>
</tr>
<tr>
<td>Op basis van GIS-tool en coördinaten van stortplaatsen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heeft geen code 6 in de lijst van stortplaatsen van de provincie en grote gemeenten</td>
<td>Nominaal</td>
<td>1 of 0</td>
<td>1 = heeft geen code 6</td>
<td>18 stortplaatsen</td>
</tr>
<tr>
<td>Informatie over stortplaats beschikbaar</td>
<td>Nominaal</td>
<td>1 of 0</td>
<td>1 = rapport bij provincie beschikbaar</td>
<td>16 stortplaatsen</td>
</tr>
</tbody>
</table>

3.1.2 Beheer, eigendom, eigenschappen en samenstelling,
Tabel 5: 16 stortplaatsen in de zilvergroene natuur waarvan een rapport beschikbaar is.

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Locatie</th>
<th>Gemeente</th>
<th>Oppervlakte (ha)</th>
<th>Inhoud (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Beertsenhoverbroek</td>
<td>Gulpen-Wittem</td>
<td>1,30</td>
<td>32500</td>
</tr>
<tr>
<td>2</td>
<td>Gillissenstraat, Huls</td>
<td>Simpelveld</td>
<td>0,60</td>
<td>60000</td>
</tr>
<tr>
<td>3</td>
<td>Haelerweg I, Horn</td>
<td>Haelen</td>
<td>0,60</td>
<td>18000</td>
</tr>
<tr>
<td>4</td>
<td>Holleweg, Kunderberg</td>
<td>Voerendaal</td>
<td>0,08</td>
<td>2400</td>
</tr>
<tr>
<td>5</td>
<td>Hulsweeg</td>
<td>Meerlo-Wanssum</td>
<td>0,60</td>
<td>6000</td>
</tr>
<tr>
<td>6</td>
<td>Linderweg</td>
<td>Vaals</td>
<td>1,50</td>
<td>30000</td>
</tr>
<tr>
<td>7</td>
<td>Otterpad</td>
<td>Swalmen</td>
<td>1,00</td>
<td>30000</td>
</tr>
<tr>
<td>8</td>
<td>Panheeldersteeg</td>
<td>Thorn</td>
<td>0,60</td>
<td>9000</td>
</tr>
<tr>
<td>9</td>
<td>Schweiberg I</td>
<td>Gulpen-Wittem</td>
<td>0,60</td>
<td>42000</td>
</tr>
<tr>
<td>10</td>
<td>Spaubeek 2</td>
<td>Beek</td>
<td>1,50</td>
<td>150000</td>
</tr>
<tr>
<td>11</td>
<td>Moerslag</td>
<td>Margraten</td>
<td>0,30</td>
<td>15000</td>
</tr>
<tr>
<td>12</td>
<td>Stortplaats Thull</td>
<td>Schinnen</td>
<td>0,90</td>
<td>72000</td>
</tr>
<tr>
<td>13</td>
<td>Trappistenveld I</td>
<td>Venlo</td>
<td>7,05</td>
<td>528750</td>
</tr>
<tr>
<td>14</td>
<td>Trappistenveld II</td>
<td>Venlo</td>
<td>5,50</td>
<td>412500</td>
</tr>
<tr>
<td>15</td>
<td>Walburgisstraat</td>
<td>Maasbracht</td>
<td>2,00</td>
<td>100000</td>
</tr>
<tr>
<td>16</td>
<td>Winkelweg, Melick</td>
<td>Roerdalen</td>
<td>3,00</td>
<td>90000</td>
</tr>
</tbody>
</table>
3.2 Maatschappelijk draagvlak voor urban mining

Hoe zorg je voor maatschappelijk draagvlak?

Om urban mining succesvol te kunnen uitvoeren is het van belang om draagvlak te creëren. De participatie van de lokale gemeenschap wordt beschouwd als een belangrijke uitdaging voor complexe technologische projecten, waarvan urban mining een voorbeeld is (Sips, 2013). Bij urban mining spelen belangrijke economische, sociale en ecologische aspecten die door de verschillende actoren anders worden waargenomen. De één ziet kansen en de ander bedreigingen. Er is een onderscheid tussen enerzijds belanghebbenden van het project, die vooral kijken naar de mogelijken, en anderzijds omwonenden, die belang hebben bij de leefbaarheid van hun omgeving. Not in my back yard (NIMBY) speelt hier een rol (Nederveen, 2009).

Gevoelens over het missen van controle en informatie voeden een negatieve kijk op het project. Hierdoor heeft men nog enkel oog voor de risico's en de nadelen. Bij het project in Houthalen-Helchteren heeft men geleerd dat het overbruggen van verschillen tussen de twee genoemde (typen) actoren, noodzakelijk is voor het realiseren van een project (Sips, 2013).

Om urban mining succesvol te maken gaat het om: (a) het vinden van economisch draagvlak bij de subsidieverstrekende en investerende partijen, (b) politiek/bestuurlijk draagvlak bij overheids en (c) maatschappelijk draagvlak bij alle actoren die bij urban mining betrokken zijn of worden. Het uitspreken van de ambitie om draagvlak te creëren kan echter een vorm van retoriek zijn waarmee problemen worden verhuld die daadwerkelijk spelen. Een gebrek aan draagvlak is een signaal dat aangeeft dat mogelijk niet voldoende, of niet op de juiste manier rekening gehouden met het veelvoud van belangen. Het is een signaal dat aangeeft dat een gemaakte keuze misschien niet de meest gewenste keuze is (Duineveld & Beunen, 2006).

Indien het noodzakelijke maatschappelijk draagvlak ontbreekt, kan dit ervoor zorgen dat er grote vertragingen op gaan treden of dat het project uiteindelijk zelfs wordt afgeblazen (Nillesen, 2009). Om draagvlak te creëren moet communicatie, participatie en het wekken van vertrouwen vanaf het begin op de juiste wijze ingevuld worden. Indien er een vooroordeel is om bij een locatie urban mining toe te passen is het verstandig om voor de eerste bijeenkomst al een vangnet te creëren voor alle mogelijke klachten en problemen. Dit betekent dat men de beslissing over urban mining en de participatievorm voorafgaand aan de 1e bijeenkomst al genomen dient te hebben. Als er bij deze eerste bijeenkomst vervolgens een discussie ontstaat, kan deze worden gevoerd over de randvoorwaarden in plaats van over het al dan niet doorgaan van het project.

Wat zijn de uitdagingen en welke factoren zijn nuttig bij het creëren van maatschappelijk draagvlak? Nillesen beschrijft in: 'De creatie van maatschappelijk draagvlak' (2009), de belangrijkste factoren die leiden tot maatschappelijk draagvlak:

1. Omgevings- en krachtvenldapanalyse;
 Hiermee worden actoren, factoren en het krachtveld duidelijk.
2. Communicatie- en participatiestrategie;
 Als leidraad voor het gehele proces, op basis van de omgevings- en krachtvenldapanalyse.
3. Transparantie en het zo vroeg mogelijk communiceren in het proces;
 Zo wordt vertrouwen gecreëerd en voorkom je een geruchtenstroom.
4. Het toepassen van persoonlijke verbale communicatie;
 Persoonlijk verbale communicatie leidt tot meer vertrouwen en levert de bruikbaarste reacties op. Veel vertrouwen betekent weinig participatie vereist, weinig vertrouwen betekent veel participatie vereist. Hiermee wordt dus het draagvlak bepaald.
5. Een klankbordgroep met vastgelegde bevoegdheden;
3.3 Technieken en methoden voor urban mining
Wat is de stand van de techniek en welke methoden zouden er (op termijn) rendabel kunnen worden uitgevoerd bij urban mining van de stortplaatsen in de Provincie Limburg?

3.3.1 Onbewerkt afvoeren, verbranden en bijbehorende kosten

Tabel 6 Overzicht kosten voor onbewerkt afvoeren van afval uit stortplaatsen.

<table>
<thead>
<tr>
<th>Techniek</th>
<th>Kosten (€/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afgraven en opslaan</td>
<td>4,00</td>
</tr>
<tr>
<td>Verbranden all-in, incl. overslag, transport e.d.</td>
<td>64,00</td>
</tr>
<tr>
<td>Stort- en verbrandingsbelasting</td>
<td>13,00</td>
</tr>
<tr>
<td>Totaal</td>
<td>81,00</td>
</tr>
</tbody>
</table>

Een aandachtspunt is dat door afbraak van organisch materiaal de verbrandingswaarde volgens Quaghebeur et al. (2013) afneemt van 12 MJ/kg voor een 15 jaar oude stortplaats tot 6 MJ/kg voor een 30 jaar oude stortplaats. Omdat de meeste AVI’s zijn ontworpen op basis van ongesorteerd huishoudelijk afval met een verbrandingswaarde van ongeveer 10-12 MJ/kg, kan dit gevolgen hebben voor het poorttarief. Verbrandingsketels van elektriciteitscentrales en AVI’s worden namelijk ontworpen met een bepaald vermogen. Moderne kolencentrales hebben bijvoorbeeld een elektrisch vermogen van 800MW of 1000MW. Moderne grootschalige AVI’s - zoals de AVI’s in Nederland - hebben een thermisch vermogen van ongeveer 100MW. Dit betekent dat de roosteroven en de ketel niet meer dan 100MW aan afval kunnen verbranden. Het thermisch vermogen dat gegenereerd wordt bij het verbranden van afval in MW is het product van de verbrandingswaarde in bijvoorbeeld MJ/kg en hoeveelheid afval per tijdseenheid in bijvoorbeeld ton/uur. Wanneer er meer dan de vermelde 100MW verbrand wordt, treedt ernstige schade op. Om zoveel mogelijk geld te verdienen uit het verbranden van afval en de kosten zo laag mogelijk te houden zal men echter proberen om een AVI maximaal te vullen tot aan het ontwerpvormen. Een lagere verbrandingswaarde betekent dan ook dat er meer afval verbrand kan worden, mits de mechanische toe- en afvoersystemen dit aan kunnen. Bij een lagere verbrandingswaarde wordt dan ook veelal een lager poorttarief in rekening gebracht (Schuttenbeld et al., 2007).

3.3.2 Sorteerinstallaties en bijbehorende kosten

Om de hoeveelheid te verbranden materiaal te beperken kan er geïnvesteerd worden in sorteermachines. Hierdoor wordt het ook mogelijk om materialen, die een waarde hebben en hergebruikt kunnen worden, er uit te sorteren (Quaghebeur et al., 2013; Van der Zee, Achterkamp, & De Visser, 2004).
Daarnaast is sorteren of anderszins verwerken de minimumstandaard voor bouw- en sloopafval (BSA) en vergelijkbaar afval. Hierbij moeten, mits in het afval aanwezig, in elk geval worden gesorteerd:
- alle componenten als genoemd in art. 4.1 van de Regeling Bouwbesluit 2012:
 - als gevaarlijk aangeduide afvalstoffen als bedoeld in hoofdstuk 17 van de afvalstoffenlijst bedoeld in de Regeling Europese afvalstoffenlijst;
 - teerhoudende dakbedekking, al dan niet met dakbeschot;
 - teerhoudend asfalt;
 - bitumineuze dakbedekking, al dan niet met dakbeschot;
 - niet-teerhoudend asfalt;
 - vlakglas, al dan niet met kozijn;
 - gipsblokken en gipsplaatmateriaal;
 - dakgrind;
 - armaturen;
 - gasontladingslampen.
- fijne fractie (zeefzand);
- metaal;
- granulaat (steenachtig materiaal);
- hout;
- plastic;
- gevaarlijk aangeduide afvalstoffen anders dan bedoeld in hoofdstuk 17 van de afvalstoffenlijst uit de Regeling Europese afvalstoffenlijst.

Het is moeilijk om het bij urban mining vrijkomende materiaal nog op exact op deze manier te sorteren. In de vergunning - welke nodig is om de stortplaats te openen - zullen daarom ook specifieke voorschriften moeten worden opgenomen over het sorteren van bouw- en sloopafval (BSA). Sorteerresiduen moeten in elk geval verbrand kunnen worden en mogen niet gestort worden. Dit geldt ook voor sorteerresiduen van huishoudelijk (rest)afval en bedrijfsafval. De minimumstandaard voor sorteerresidu, waarvoor recycling niet meer mogelijk is of duurder is dan € 175/ton, is verbranden (Ministerie van Infrastructuur en Milieu, 2014b).

Een aandachtspunt is dat door het uitsorteren van inerte materialen (fijne fractie, metalen en granulaat) de verbrandingswaarde van de residuen stijgt naar ongeveer 18 MJ/kg. Omdat de meeste AVI's zijn ontworpen op basis van een verbrandingswaarde van 10-11 MJ/kg, heeft dit gevolgen voor het poorttarief. De roosteroven en de verbrandingsskellet van een AVI is ontworpen met een bepaald vermogen, zoals uitgelegd in §3.1. Bij een hogere verbrandingswaarde kan er minder afval verbrand worden en wordt een hoger poorttarief in rekening gebracht. Bij een verbrandingswaarde van 18 MJ/kg verdubbeld volgens Schuttenbeld et al. (2007) het poorttarief.

De genoemde kosten en baten zijn samengevat in tabel 7. Zoals uit de tabel blijkt zit er een grote bandbreedte in de vermelde percentages. Dit wordt veroorzaakt door verschillen in samenstelling van de stortplaatsen. Stortplaatsen, die in gebruik waren vóór 1950, bevatten niet veel waardevolle materialen, omdat het grootste deel van het afval uit as en organisch materiaal bestond (Van Passel et al. 2013). Hetzelfde geldt voor stortplaatsen die in gebruik waren na 1985. Na dat jaar werd er beter gerecycled en deze stortplaatsen bevatten dus ook minder waardevolle materialen. Voor de haalbaarheid van urban mining is de samenstelling van de stortplaats van cruciaal belang. Om de samenstelling van een stortplaats beter te bepalen zal een onderzoek op locatie moeten worden uitgevoerd (Krook, Svensson, & Eklund, 2012; Quaghebeur et al., 2013).
Tabel 7 Overzicht kosten en baten bij sorteren van afval uit stortplaatsen.

<table>
<thead>
<tr>
<th>Techniek</th>
<th>Kosten (€/ton)</th>
<th>Baten (€/ton)</th>
<th>Percentage (%)</th>
<th>Totale kosten (€/ton)</th>
<th>Totaal baten (€/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afgraven en opslaan</td>
<td>4,00</td>
<td></td>
<td>100%</td>
<td>4,00</td>
<td></td>
</tr>
<tr>
<td>Sorteren</td>
<td>11,00</td>
<td></td>
<td>100%</td>
<td>11,00</td>
<td></td>
</tr>
<tr>
<td>Fijne fractie</td>
<td>0</td>
<td>42,5±17,5%</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ferrometalen</td>
<td>125±5</td>
<td>3±2%</td>
<td>3,75±2,50</td>
<td>4,05±4,05</td>
<td></td>
</tr>
<tr>
<td>Non-ferrometalen</td>
<td>900±100</td>
<td>0,45±0,45%</td>
<td>4,05±4,05</td>
<td>0,15±0,05</td>
<td></td>
</tr>
<tr>
<td>Granulaat</td>
<td>1</td>
<td>15±5%</td>
<td>0,15±0,05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verbranden all-in, incl. overslag, transport e.d.</td>
<td>128,00</td>
<td>39,05±24,95%</td>
<td>50,00±32,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stort- en verbrandingsbelasting</td>
<td>13,00</td>
<td>39,05±24,95%</td>
<td>5,08±3,24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totaal</td>
<td></td>
<td></td>
<td>100%</td>
<td>70,08±35,24</td>
<td>7,95±6,60</td>
</tr>
</tbody>
</table>

3.3.3 Thermische conversie en bijbehorende kosten

Door het uitsorteren van de inerte materialen (fijne fractie, metalen en granulaat) stijgt de verbrandingswaarde van het restmateriaal naar ongeveer 18 MJ/kg. Het poorttarief van de AVI's is dan hoger, om dezelfde reden als genoemd in §3.2. Aanvullend zou er daarom geïnvesteerd kunnen worden in een eigen installatie voor het omzetten van het hoogcalorische restmateriaal in energie. Een dergelijke installatie moet voldoen aan de BBT voor AVI's. De Europese Commissie (2006b) heeft de BBT met de huidige stand van de techniek voor AVI's vastgelegd in een BREF-document.

Het sorteren en omzetten in energie is volgens Van Passel et al. (2013) alleen interessant voor stortplaatsen groter dan 100.000 m² (10 ha) en als er genoeg waardevolle materialen aanwezig zijn. In de casestudy wordt uitgegaan van een hoogte van 7 meter met een 1 meter dikke afdeklaag. Dit is een volume van 800.000 m³. Volgens het artikel komt dit overeen met 1.040.000 ton afdeklaag en afval. Na sortering blijft ongeveer 40% over. Van Passel et al. (2013) hebben de BBT met de huidige stand van de techniek voor AVI's vastgelegd in een BREF-document.

Het sorteren en mengen en in een eigen installatie voor het omzetten van het hoogcalorische restmateriaal naar ongeveer 18 MJ/kg. Dit zijn de werkelijke maximum en minimum waarde van de afgebrande energie voor klein- en grootvormige AVI's. In enkele gevallen zijn het rendement van 22% elektrisch en 74% warmte, met een minimaal rendement van 18% elektrisch en 75% warmte. Dit zijn de werkelijke maximum en minimum waarden van Deense AVI's, maar de huidige gebruikt wordt voor stadsverwarmingsinstallaties.

In de casestudy wordt uitgegaan van een elektrisch rendement van 21% en een minimaal rendement van 18% elektrisch, en een warmte van 74% en een minimaal rendement van 18% elektrisch en 75% warmte. Dit zijn de werkelijke maximum en minimum waarden van Deense AVI's, waar de huidige gebruikt wordt voor stadsverwarmingsinstallaties.

In het rapport van Weatherby and Eddy (2008) is voor het Kanaaleiland Jersey uitgebreid onderzocht wat de beste strategie was voor het verwerken van het afval van het eiland. De informatie uit het rapport kan goed gebruikt worden voor urban mining. Uit het rapport blijkt dat de roosterovens van o.a. CNIM/Martin, Lentjes/Lurgi en Keppel-Seghers beschikbaar zijn vanaf een capaciteit van ongeveer 20.000 ton/jaar. Austrian Energy & Environment (AEE), Foster Wheeler en Metso/Kvaerner kunnen wervelbedovens leveren voor het verbranden van hoogcalorisch

Voorzichtigheid is echter geboden, blijkt uit het voorbeeld van Bavin in Veendam. In 2011 is deze installatie failliet gegaan nog voordat deze in gebruik was genomen. De AVI met een capaciteit van 26.000 ton/jaar zou stoom en elektriciteit gaan leveren aan Nedmag. Nedmag delft en verwerkt magnesiumzout in Veendam. Echter, het bleek dat slechts 60% van de geplande energie geproduceerd kon worden. Volgens de curator betekent dit dat de installatie in de praktijk niet rendabel zou zijn. Door het voortijdige faillissement ontstaat een verlies van € 16 miljoen, waarvan € 5 miljoen is betaald door de Noordelijk Ontwikkelingsmaatschappij (NOM) (Dagblad van het Noorden, 2011).

Van Passel et al. (2013) vermelden voor de kapitaalkosten van afvalverbranding een bedrag van € 450 tot € 550/ton geïnstalleerde capaciteit, met een gemiddelde van € 500, en voor de operationele kosten een bedrag van € 40 tot € 70/ton, met een gemiddelde van € 55.

In Tabel 8 zijn de investeringsbedragen samengevat zoals die zijn gemeld in het rapport van DEFRA (2007) voor afvalverbranding op basis van pyrolyse of vergassing. In de laatste kolom is het investeringsbedrag gedeeld door de geïnstalleerde capaciteit per ton. Er is duidelijk te zien dat een grotere AVI schaalvoordelen heeft. De bedragen voor een AVI van 25.000 ton/jaar komen overeen met de gegevens van Van Passel et al. (2013) en in grote lijnen met het bedrag van € 16 miljoen van de afvalvergasser van Bavin met een capaciteit van 26.000 ton/jaar (Dagblad van het Noorden, 2011). De gemiddelde levensduur van een kleinschalige pyrolyse of vergassingsinstallatie is 15 tot 25 jaar (DEFRA, 2013). Daarnaast moet rekening gehouden worden met een verbrandingsbelasting van € 13/ton (Duurzaambedrijfsleven.nl, 2014).

Tabel 8 Investeringsbedragen voor geavanceerde AVI op basis van pyrolyse of vergassing (DEFRA, 2007)

<table>
<thead>
<tr>
<th>Capaciteit</th>
<th>Investeringsbedrag uit rapport</th>
<th>Omgerekend naar per ton geïnstalleerde capaciteit</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.000 ton/jaar</td>
<td>€ 12 miljoen</td>
<td>€ 480</td>
</tr>
<tr>
<td>40.000 ton/jaar</td>
<td>€ 16 miljoen</td>
<td>€ 400</td>
</tr>
<tr>
<td>80.000 ton/jaar</td>
<td>€ 23 miljoen</td>
<td>€ 288</td>
</tr>
<tr>
<td>100.000 ton/jaar</td>
<td>€ 26 miljoen</td>
<td>€ 260</td>
</tr>
<tr>
<td>600.000 ton/jaar</td>
<td>€ 68 miljoen</td>
<td>€ 113</td>
</tr>
</tbody>
</table>
3.4 Oorspronkelijk en wenselijke natuurwaarden
Wat zijn de oorspronkelijke natuurwaarden en de wenselijke natuurwaarden van stortlocaties in de provincie Limburg, welke economische- en milieuaspecten spelen een rol en wat zijn de mogelijkheden van natuurherstel?

3.4.1 Habitats en milieu-eisen per natuurdoeltype

De belangrijkste milieukundige knelpunten voor het realiseren van plantaardige natuurdoeltypen zijn vermeesting, verdroging en verzuring (Westhoff, 1999). Om te bekijken of het haalbaar is bepaalde natuurdoeltypen te realiseren is het van belang te weten hoe gevoelig ze zijn voor deze knelpunten. Aan de hand van een omgevingsanalyse kan dan bekeken worden in hoeverre het haalbaar is een bepaald natuurdoeltype te realiseren. Uiteraard moeten de habitatseisen ook passen voor het natuurdoeltype zoals gedefinieerd in bijlage WP3.A1. In onderstaande tabellen staat per hoofdcategorie (bossen, struweel, heiden enz.) weergegeven welk percentage van de voorkomende vegetatie voldoet binnen een bepaalde gevoeligheidscategorie. Hierbij staat 0 voor niet-gevoelig, 1 voor beperkt gevoelig, 2 voor gevoelig en 3 voor zeer gevoelig (Krekels et al., 2003).

Met gevoeligheidsscore wordt bedoeld in welke mate een vegetatietype in zijn voortbestaan bedreigd wordt door vermeesting of verzuring.

Tabel 9: Gevoeligheidsscore voor vermeesting per hoofdcategorie natuurdoeltype

<table>
<thead>
<tr>
<th>Labels</th>
<th>Bossen</th>
<th>GRASLANDEN</th>
<th>HEIDEN</th>
<th>HOOGVEEN</th>
<th>MOERASSEN</th>
<th>PIONIERGEMEDE</th>
<th>RUGTEN</th>
<th>STRUWELEN</th>
<th>WATEREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>50,00%</td>
<td>25,00%</td>
<td>20,00%</td>
<td>12,50%</td>
<td>33,33%</td>
<td>66,67%</td>
<td>20,00%</td>
<td>50,00%</td>
<td>50,00%</td>
</tr>
<tr>
<td>1</td>
<td>50,00%</td>
<td>25,00%</td>
<td>20,00%</td>
<td>12,50%</td>
<td>66,67%</td>
<td>20,00%</td>
<td>50,00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>50,00%</td>
<td>20,00%</td>
<td>40,00%</td>
<td>12,50%</td>
<td>80,00%</td>
<td>50,00%</td>
<td>50,00%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De heide- en hoogveenvegetatie scoren 100% (3) op zeer gevoelig voor vermeesting zie tabel 10. Een voedselsarme bodem is bij heide en hoogveen dus een absolute must.

Tabel 10: gevoeligheidsscore voor verzuring per hoofdcategorie natuurdoeltypen.

<table>
<thead>
<tr>
<th>Labels</th>
<th>Bossen</th>
<th>GRASLANDEN</th>
<th>HEIDEN</th>
<th>HOOGVEEN</th>
<th>MOERASSEN</th>
<th>PIONIERGEMEDE</th>
<th>RUGTEN</th>
<th>STRUWELEN</th>
<th>WATEREN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40,00%</td>
<td>25,00%</td>
<td>20,00%</td>
<td>37,50%</td>
<td>100,00%</td>
<td>40,00%</td>
<td>50,00%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50,00%</td>
<td>25,00%</td>
<td>40,00%</td>
<td>37,50%</td>
<td>40,00%</td>
<td>50,00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10,00%</td>
<td>25,00%</td>
<td>40,00%</td>
<td>20,00%</td>
<td>20,00%</td>
<td>50,00%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16,67%</td>
<td>100,00%</td>
<td>100,00%</td>
<td>25,00%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uit tabel 10 valt op te maken dat ruigtevegetaties over het algemeen niet gevoelig zijn voor verzuring. 100% van de vegetatie scoort een 0; niet gevoelig. Hoogveen en heide zijn zeer gevoelig voor verzuring.

3.4.2 Normkosten voor de sanering van bodem en de inrichting van natuurgroond

Inrichtingsnormen natuurgroond

Het inrichten van een hectare droge natuurgroond kost 9.600 euro en het inrichten van een hectare natte natuurgroond kost 23.571 euro. De inrichtingskosten worden bepaald door (a) de voorbereidingsactiviteiten (vergunningen e.d.), (b) aard van het inrichtingswerk (grondwerkzaamheden e.a.) en (c) beplanting. Hierbij zijn natte habitat en volgens de literatuur duurder omdat hiervoor meer grondverzetwerkzaamheden noodzakelijk zijn (Silvis et al., 2013).
Reguliere saneringsnormen

Tabel 11: Reguliere Saneringskosten per verwerkingstechniek; richtlijn prijzen 2004
(Bodemrichtlijn.nl, 2015c)

<table>
<thead>
<tr>
<th>Techniek</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermische reiniging</td>
<td>€ 40,– tot € 60,–/ ton verwerkte grond</td>
</tr>
<tr>
<td>Natte reiniging</td>
<td>€ 30,– tot € 45,–/ ton verwerkte grond</td>
</tr>
<tr>
<td>Biologische reiniging</td>
<td>€ 20,– tot € 35,–/ ton verwerkte grond</td>
</tr>
<tr>
<td>Immobilisatie techniek</td>
<td>€ 30,– tot € 35,–/ ton verwerkte grond</td>
</tr>
<tr>
<td>Ontgraven en transport</td>
<td>€ 5,– tot € 25,–/ m³ verwerkte grond</td>
</tr>
<tr>
<td>Depokosten</td>
<td>€ 7,– a € 45,–/ ton verwerkte grond</td>
</tr>
</tbody>
</table>

Tabel 12: Voorbehandelingskosten te saneren grond; richtlijn prijzen 2004
(Bodemrichtlijn.nl, 2015c)

<table>
<thead>
<tr>
<th>Techniek</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuurlijke ontwatering</td>
<td>€ 15,– à € 30,–/ton verwerkte grond</td>
</tr>
<tr>
<td>Geforceerde ontwatering</td>
<td>€ 8,– à € 10,–/ton verwerkte grond</td>
</tr>
<tr>
<td>Zeven</td>
<td>€ 2,– à € 4,–/ton verwerkte grond</td>
</tr>
</tbody>
</table>

In Situ sanering

Tabel 13: In Situ technieken met bijbehorende kosten; richtjaar prijzen 2004
(Bodemrichtlijn.nl, 2015c)

<table>
<thead>
<tr>
<th>Techniek</th>
<th>Kosten</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biologische afbraak (in situ)</td>
<td>€ 10,0 tot € 100,– per m³ grond</td>
</tr>
<tr>
<td>Chemische afbraak (in situ)</td>
<td>€ 50,– tot € 100,– per m³ grond</td>
</tr>
<tr>
<td>Bodem luchtextractie</td>
<td>€ 10,– tot € 15,– per m³ grond</td>
</tr>
<tr>
<td>Perslucht</td>
<td>€ 5,– tot € 35,– per m³ grond</td>
</tr>
<tr>
<td>Electroreclamatie</td>
<td>€ 100,– tot € 225,– per m³ grond</td>
</tr>
<tr>
<td>In situ extractie</td>
<td>Geen kostenindicatie in literatuur</td>
</tr>
<tr>
<td>Verhitting</td>
<td>Geen kostenindicatie in literatuur</td>
</tr>
<tr>
<td>Spoelen met grondwater A</td>
<td>€ 150,– tot € 250,– per boring tot 8 meter onder het maaiveld</td>
</tr>
<tr>
<td></td>
<td>€ 150,– tot € 450 per meter boring > 8 meter onder maaiveld</td>
</tr>
<tr>
<td></td>
<td>€ 450,– tot € 1.200,– euro per maand als de grondwaterontrekking in stand moet worden gehouden.</td>
</tr>
</tbody>
</table>

^Soms moeten horizontale drains worden aangebracht omdat verticale drains niet mogelijk zijn of horizontale ontrekking wenselijk is. Indien dit gerealiseerd wordt door een graafmachine dan kost dit ca € 5,– tot € 15,– euro per meter extra. Indien de horizontale drains moeten worden aangebracht door horizontaal gestuurde boringen dan komt er ca € 80,– per meter bij.

In de bodemsaneringstabellen is een kostenspreiding zichtbaar per techniek. De bandbreedte van de kosten wordt veroorzaakt door de concentratie van de verontreiniging, het soort verontreiniging, de spreiding van de verontreiniging, bereikbaarheid van de locatie en de bodemsoort (Bodemrichtlijn.nl, 2015c).
Grondwatersanering
Soms moet het vrijgekomen bodemwater bij grondsanering ook worden behandeld. De vastgelegde prijzen in de literatuur hebben een zeer grote bandbreedte en zijn vaak niet volledig gedocumenteerd (Bodemrichtlijn.nl, 2015c). Niet van alle technieken stonden prijzen in de literatuur. De gevonden prijzen per techniek staan in WP3.A3 Kosten voor grondwatersaneringstechnieken

3.4.3 Keuze voor een natuurdoeltype en mogelijke alternatieven
De keuze van een natuurdoeltype hangt af van:
2. De omringende natuur en hoe deze omringende natuur versterkt kan worden door te kiezen voor een bepaald natuurdoeltype (Provinciale Staten van Limburg, 2014).
3. De mogelijkheid om een natuurdoeltype milieu- en natuurtechnisch te realiseren.
4. De betaalbaarheid van het natuurdoeltype.

Afwaarderen natuur
Indien het natuurdoeltype van de eerste voorkeur niet haalbaar is, kan volgens ons worden "afgewaardeerd" naar een natuurdoeltype dat wel haalbaar is en past bij de gebiedsindeeling. Afwaardering kan plaatsvinden op basis van habitatseisen, milieunormen en economische kosten (Provinciale Staten van Limburg, 2014). Het gaat echter buiten de reikwijdte van dit onderzoek om hier verder op in te gaan. Dit kan nader worden uitgewerkt in een casestudie.

Opwaardering perceel
In verband met voedselzekerheid hebben agrarische percelen op een vuilstortplaats nauwelijks waarde in het economisch verkeer. Daarnaast is in elk geval sprake van een slecht imago van afgedekte stortplaatsen. De gemiddelde waarde van een dergelijk agrarisch perceel kan dan ook afgewaardeerd worden tot nihil (In het Veld & Krol, 2005b). Indien de grond na de sanering akkerbouwbestemming behoudt, vindt er een opwaardering plaats van ca. 51.000 euro per hectare (Silvis et al., 2013). Indien de voormalige agrarische grond een natuurbestemming krijgt, vindt er een opwaardering plaats van 10.200 euro per hectare (20% van de agrarische waarde) (In het Veld & Krol, 2005b). Indien de grond voor de vuilstortsanering al een natuurbestemming had, vindt uiteraard een economische opwaardering plaats daar het perceel beter verhandelbaar zal zijn. Hier zijn echter geen bedragen aan gekoppeld in de literatuur. De opwaarderingskosten kunnen worden gecorrigeerd op de inrichtingskosten wanneer de waarde van de grond toeneemt. Dit betreft wel een financiële reserve in de grond, die pas vrij komt na verkoopt.

3.4.4 Wie is verantwoordelijk voor de kosten van natuurherstel?
De kosten voor sanering en de herinrichting van de voormalige stortplaatsen zijn voor de eigenaar. Voor de zestien stortplaatsen (tabel 5 §3.1.1 en WP4.B2) zijn dat in vier gevallen de gemeenten. De andere twaalf stortplaatsen zijn in handen van bedrijven en particulieren. Deze eigenarenstatus is gebaseerd op de rapporten die omstreeks de eeuwwisseling zijn opgesteld. Door de aanwezigheid van bodemverontreiniging op voormalige stortplaatsen is het bevoegd gezag de Gedeputeerde Staten van de provincie Limburg, op basis van de Wet bodem bescherming (Wbb). Er is echter een uitzondering. In het Besluit "aanwijzing bevoegd gezag gemeenten Wet bodembescherming" zijn de gemeenten Heerlen, Maastricht en Venlo ook aangewezen...
adviesrapport

milieuadvies

(Overheid.nl, 2015a). Indien de gemeente niet bevoegd is, is de provincie bevoegd. De coördinatie van bodemsanering in Nederland is daarmee een zaak van gemeenten en provincies.

3.5 Afwegen waarden om te prioriteren

Wat zijn de mogelijkheden om de economische waarde of kosten van urban mining af te wegen tegen de maatschappelijke waarden van natuur en milieu? Kan de haalbaarheid van een urbanminingproject in Limburg worden ingeschat?

3.5.1 Het model en de basis

In vergelijking met Van der Zee et al. (2004) passen wij nog altijd een eerste quick & dirty sortering toe, namelijk door de minimale voorwaarden van onze opdrachtgever toe te passen op de lijst van opties (tabel 4 §3.1.1). De nadere prioritering vindt dan echter niet meer plaats op basis van een KBA zoals bij Van der Zee, maar op basis van een MCA waarin ook niet-financiële criteria zijn opgenomen. Om de haalbaarheid in te kunnen schatten wordt daarna van de top 4 per stortplaats een exploitatiebegroting gemaakt.

Een MCA in het kader van urban mining is niet eerder uitgevoerd of beschreven. Daarom hebben wij een flexibel spreadsheet model ontwikkeld (bijlage WP4.B2), zodat ook andere onderzoekers hier in de toekomst gebruik van kunnen maken door eenvoudigweg aanpassingen door te voeren in het model.

3.5.2 Criteriumcategorieën en criteria van de MCA-light

Tabel 14: Criteriumcategorieën en criteria van de MCA-light

<table>
<thead>
<tr>
<th>Criteriumcategorieën</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuur</td>
<td>1. Huidig gebruik omliggende terreinen</td>
</tr>
<tr>
<td></td>
<td>2. Huidig gebruik stortterrein</td>
</tr>
<tr>
<td>Milieu</td>
<td>3. Grondwatertoestand</td>
</tr>
<tr>
<td></td>
<td>4. Contactrisico met afval</td>
</tr>
<tr>
<td></td>
<td>5. Milieu-effecten transport voor verder verwerking</td>
</tr>
<tr>
<td></td>
<td>6. Afstand tot verwerkingsinstallatie</td>
</tr>
<tr>
<td></td>
<td>7. Mate van gezondheidsrisico</td>
</tr>
<tr>
<td>Financiël</td>
<td>8. Samenstelling stortplaats</td>
</tr>
<tr>
<td></td>
<td>9. Oppervlakte van de stortplaats</td>
</tr>
<tr>
<td></td>
<td>10. Inhoud van de stortplaats</td>
</tr>
</tbody>
</table>

Door de onderzoekers en de opdrachtgever samen zijn aanvankelijk 48 criteria bedacht die allen het doel van de opdrachtgever zouden dienen. Er zijn twee belangrijke redenen voor deze reductie
3.5.3 De geprioritiseerde lijst van stortplaatsen

Ongeacht de gekozen weegset blijkt de top twee van stortplaatsen gelijk. In feite is hiermee ook een gevoeligheidsanalyse uitgevoerd voor de weegsets. Dat juist in de gewogen weegsets het relatieve verschil toeneemt tussen de bovenste twee (13, 14) en de derde van boven (15 of 10) is voor ons reden om die twee aan te wijzen als meest geschikte stortplaatsen voor urban mining. Deze twee stortplaatsen vormen een cluster waardoor aanpak van beide stortplaatsen (13, 14) voor de hand ligt. Het verschil tussen de gewogen sommering van stortplaats 15 en 10 is heel klein en in weegset 4 wisselen deze twee stortplaatsen van positie. Wat ons betreft staan deze twee stortplaatsen op een gedeelde derde plaats, omdat ons MCA-light model ook een foutmarge moet worden toegerekend van +/- 0,01.

Tabel 15: Geprioritiseerde lijst van stortplaatsen op basis van weegset 5.

<table>
<thead>
<tr>
<th>#</th>
<th>Locatienaam</th>
<th>Gemeente</th>
<th>Zonder en Weegset 1 Ongewogen</th>
<th>Gewogen sommering met hierarchie</th>
<th>Weegset 2 Ongewogen</th>
<th>Weegset 3 M136</th>
<th>Weegset 4 NMF</th>
<th>Weegset 5 Geconsolideerd</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Trapplenterwold</td>
<td>Venlo</td>
<td>0,8667</td>
<td>0,8778</td>
<td>0,9333</td>
<td>0,9333</td>
<td></td>
<td>0,9150</td>
</tr>
<tr>
<td>14</td>
<td>Trapplenterwold</td>
<td>Venlo</td>
<td>0,8667</td>
<td>0,8778</td>
<td>0,9333</td>
<td>0,9333</td>
<td></td>
<td>0,9150</td>
</tr>
<tr>
<td>15</td>
<td>Walburgstraat</td>
<td>Maastricht</td>
<td>0,8000</td>
<td>0,8037</td>
<td>0,8083</td>
<td></td>
<td>0,7700</td>
<td>0,7850</td>
</tr>
<tr>
<td>16</td>
<td>Sappelberg 2</td>
<td>Beek</td>
<td>0,6670</td>
<td>0,7465</td>
<td>0,7675</td>
<td></td>
<td>0,7808</td>
<td>0,7808</td>
</tr>
<tr>
<td>17</td>
<td>Beerta-Wilgen</td>
<td>Gulpen-Wittem</td>
<td>0,6500</td>
<td>0,6630</td>
<td>0,7625</td>
<td></td>
<td>0,7267</td>
<td>0,7433</td>
</tr>
<tr>
<td>18</td>
<td>Winikweg, Maliken</td>
<td>Roerdalen</td>
<td>0,7883</td>
<td>0,7707</td>
<td>0,7450</td>
<td></td>
<td>0,7275</td>
<td>0,7425</td>
</tr>
<tr>
<td>19</td>
<td>Gulikstraat, Huls</td>
<td>Simpelveld</td>
<td>0,5803</td>
<td>0,5370</td>
<td>0,7042</td>
<td></td>
<td>0,5967</td>
<td>0,7050</td>
</tr>
<tr>
<td>20</td>
<td>Stortplaats Teull</td>
<td>Schinnen</td>
<td>0,6167</td>
<td>0,6778</td>
<td>0,6706</td>
<td></td>
<td>0,6767</td>
<td>0,6833</td>
</tr>
<tr>
<td>21</td>
<td>Linderweg</td>
<td>Vaals</td>
<td>0,4167</td>
<td>0,5407</td>
<td>0,6125</td>
<td></td>
<td>0,5500</td>
<td>0,6517</td>
</tr>
<tr>
<td>22</td>
<td>Schwanberg I</td>
<td>Gulpen-Wittem</td>
<td>0,4833</td>
<td>0,5704</td>
<td>0,5958</td>
<td></td>
<td>0,6300</td>
<td>0,6250</td>
</tr>
<tr>
<td>23</td>
<td>Moerloog</td>
<td>Margraten</td>
<td>0,6667</td>
<td>0,5944</td>
<td>0,6083</td>
<td></td>
<td>0,5700</td>
<td>0,5742</td>
</tr>
<tr>
<td>24</td>
<td>Parchemstraat</td>
<td>Thorn</td>
<td>0,5333</td>
<td>0,5667</td>
<td>0,5250</td>
<td></td>
<td>0,5367</td>
<td>0,5450</td>
</tr>
<tr>
<td>25</td>
<td>Haarleweg I, Horn</td>
<td>Haarlen</td>
<td>0,8167</td>
<td>0,5444</td>
<td>0,5375</td>
<td></td>
<td>0,5467</td>
<td>0,5300</td>
</tr>
<tr>
<td>26</td>
<td>Otterpad</td>
<td>Swerfen</td>
<td>0,5663</td>
<td>0,5274</td>
<td>0,4992</td>
<td></td>
<td>0,4825</td>
<td>0,4867</td>
</tr>
<tr>
<td>27</td>
<td>Holweg</td>
<td>Maastricht-Wanroosum</td>
<td>0,4067</td>
<td>0,4926</td>
<td>0,4000</td>
<td></td>
<td>0,3933</td>
<td>0,4083</td>
</tr>
<tr>
<td>28</td>
<td>Holweg, Kunderberg</td>
<td>Voerenadael</td>
<td>0,3333</td>
<td>0,3319</td>
<td>0,3333</td>
<td></td>
<td>0,4200</td>
<td>0,3817</td>
</tr>
</tbody>
</table>

Top 5: 10, 14, 15, 10, 16; 10, 14, 15, 10, 1; 10, 14, 15, 16; 10, 13, 15, 10, 1

14 Voor een grotere weergave zie bijlage WP4.B2 tabblad 2
3.6 Inschatting haalbaarheid
Kan de haalbaarheid van een urbanminingproject in Limburg worden ingeschat?

Deze vraag staat in deze paragraaf centraal en vormt het tweede onderdeel van deelvraag 4 (§1.3), toegevoegd halverwege dit onderzoek op verzoek van de opdrachtgever.

3.6.1 Exploitatiebegrotingsmodel in Excel

Uitgangspunten en aannames voor het exploitatiebegrotingsmodel:
- Geen kapitaalkosten/afschrijving omdat uitgegaan wordt van huur of *operational-lease*constructies voor de duurzame productiemiddelen zoals de sorteerinstallatie. Dit is in lijn met de richtlijnen voor financiering beschreven in bijlage WP4.B3.
- De getallen zijn gebaseerd op het opruimen en saneren van de gehele stortplaats. De looptijd is afhankelijk van de capaciteit van de afvalverwerkingsinstallaties.
- De kleine afvalverbrandingsinstallaties zijn beschikbaar vanaf een capaciteit van ongeveer 20.000 ton/jaar (Weatherby & Eddy, 2008).
- De maximale prijs voor energie is naar verwachting vergelijkbaar met industriële kosten voor warmte en elektra. Minimale prijzen vinden hun basis in relatief lagere consumentenprijzen voor warmte en elektra bij afname van kleine hoeveelheden.
- Afval ter verbranding wordt naar een bestaande AVI gebracht.
- Er is een aannamen gedaan dat bodemsanering (grond onder het stortafval) noodzakelijk is. Kosten voor grondwatersanering zijn niet meegenomen omdat in de literatuur geen (gemiddelde) normen gevonden zijn over de hoeveelheid te saneren grondwater.

Tabel 16: Exploitatiebegroting, stortplaats 1: Trappistenveld I samengevat.

<table>
<thead>
<tr>
<th>Exploitatiebegroting</th>
<th>Totaal gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opbrengsten</td>
<td>€ 22.400.000</td>
</tr>
<tr>
<td>Kosten</td>
<td>€ 35.200.000</td>
</tr>
<tr>
<td>Resultaat</td>
<td>€ -11.800.000</td>
</tr>
</tbody>
</table>

Tabel 17: Exploitatiebegroting, stortplaats 2: Trappistenveld II samengevat.

<table>
<thead>
<tr>
<th>Exploitatiebegroting</th>
<th>Totaal gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opbrengsten</td>
<td>€ 16.000.000</td>
</tr>
<tr>
<td>Kosten</td>
<td>€ 25.300.000</td>
</tr>
<tr>
<td>Resultaat</td>
<td>€ -9.300.000</td>
</tr>
</tbody>
</table>

Tabel 18: Exploitatiebegroting, stortplaats 3: Walburgisstraat samengevat.

<table>
<thead>
<tr>
<th>Exploitatiebegroting</th>
<th>Totaal gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opbrengsten</td>
<td>€ 4.000.000</td>
</tr>
<tr>
<td>Kosten</td>
<td>€ 6.500.000</td>
</tr>
<tr>
<td>Resultaat</td>
<td>€ -2.500.000</td>
</tr>
</tbody>
</table>

Tabel 19: Exploitatiebegroting, stortplaats 4: Spaubeek 2 samengevat.

<table>
<thead>
<tr>
<th>Exploitatiebegroting</th>
<th>Totaal gemiddeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opbrengsten</td>
<td>€ 5.600.000</td>
</tr>
<tr>
<td>Kosten</td>
<td>€ 8.900.000</td>
</tr>
<tr>
<td>Resultaat</td>
<td>€ -3.300.000</td>
</tr>
</tbody>
</table>

15 In het model zijn de cellen voor basisgegevens met grijs gemarkeerd.
Tabel 20: Relatieve vergelijking van de top 4 stortplaatsen per hectare.

<table>
<thead>
<tr>
<th>Stortplaats</th>
<th>Per hectare gemiddeld</th>
<th>Resultaat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Opbrengsten</td>
<td>Kosten</td>
</tr>
<tr>
<td>Trappistenveld I</td>
<td>€ 3.200.000</td>
<td>€ 4.900.000</td>
</tr>
<tr>
<td>Trappistenveld II</td>
<td>€ 2.900.000</td>
<td>€ 4.600.000</td>
</tr>
<tr>
<td>Walburgisstraat</td>
<td>€ 2.000.000</td>
<td>€ 3.300.000</td>
</tr>
<tr>
<td>Spaubeek 2</td>
<td>€ 3.700.000</td>
<td>€ 5.900.000</td>
</tr>
</tbody>
</table>

Dit zijn de resultaten zoals wij ze nu voor kunnen stellen met onvoltooid exploitatiebetrootsmodel. Wij kunnen niet alle kosten en opbrengsten berekenen op basis van alleen de basisgegevens. De uitgespaarde kosten voor Nazorg Voormalige Stortplaatsen (NAVOS) zijn bijvoorbeeld niet in te schatten op grond van enkel de basisgegevens. Om deze uitgespaarde kosten te bepalen is nader onderzoek noodzakelijk. Doordat de berekende cijfers hun basis vinden in verouderde rapporten blijft er onzekerheid over de betrouwbaarheid van deze resultaten. Het model is wel zo gebouwd dat het eenvoudig kan worden geüpdatet wanneer meer actuele en/of betrouwbaardere gegevens beschikbaar komen. Brongegevens hebben veelal één of twee significante cijfers. De niet afgeronde getallen in het MCA-model moeten afgerond worden, zoals in deze paragraaf, om de mate van accuraatheid beter te reflecteren.

3.6.2 Effect-, mitigatie- en compensatieanalyse

4. Discussie en conclusie

4.1 Discussie

De aanleiding voor dit onderzoek

Dit onderzoek begint met de opdracht van de NMFL om te onderzoeken of stortplaatsen in de zilvergroene natuur van het NNN/ de EHS gesaneerd kunnen worden, met behulp van de baten van urban mining. Het einddoel is gericht op het herstellen van de oorspronkelijke natuurwaarden. De onderliggende vraag is of deze stortplaatsen inmiddels al zijn opgegaan in de natuur en of het wel nodig is om alle stortplaatsen te saneren. Dit dient in een vervolgonderzoek uitgezocht te worden.

Haalbaarheid ook in dit onderzoek

Na de eerste review van het conceptrapport gaf de NMFL aan graag een advies te ontvangen over de haalbaarheid van urban mining, zowel economisch als ecologisch. Deelvraag 4 is daardoor aangevuld met de volgende tekst: Kan de haalbaarheid van een urban mining project in Limburg worden ingeschat?

In de beperkte tijd bleek het niet mogelijk een compleet beeld te schetsen, maar wel een voorzet te geven, dat nadere uitwerking in de toekomst mogelijk maakt.

Stortbelasting

Sinds 1 januari 2015 is de belasting op storten en verbranden van afval € 13 per 1000 kilogram. Door deze heffing wordt afvalrecycling gestimuleerd (Duurzaambedrijfsleven.nl, 2014). Wij zijn van mening dat zo'n heffing niet bijdraagt aan het succesvol uitvoeren van urban mining en dat een uitzondering op deze stortbelasting nodig is om urban mining wel succesvol te maken. Bovendien is stortbelasting in tegenspraak met het voorkeursbeleid voor afvalverwerking binnen Nederland. Dit beleid wordt gesymboliseerd door de ladder van Lansink, waarin recycling de voorkeur heeft boven het storten en verbranden van afvalstoffen (De Minister van Volksgezondheid en Milieuhygiëne, 1979). Reeds gestort afval dat via urban mining wordt gewonnen als grondstof, kan op de ladder van Lansink vervolgens alleen maar stijgen als het alsnog wordt gerecycled, gecomposteerd of verbrand ten behoeve van energiewinning.

Draagvlak

Om urban mining succesvol te maken gaat het ook om (1) het vinden van economisch draagvlak bij de subsidieverstrevende en investerende partijen, (2) politiek/bestuurlijk draagvlak bij overheden en (3) maatschappelijk draagvlak bij alle actoren die bij urban mining bij een gekozen locatie betrokken zijn of worden. Het ontbreken van draagvlak kan echter ook een signaal zijn dat de keuze misschien niet de juiste is rekening houdend met belangen van andere stakeholders (Duineveld & Beunen, 2006).

Rijksfinanciering

Om urban mining succesvol te maken is het ook van belang te realiseren dat financiering van bodemsanering aan verandering onderhevig is. Momenteel zit de rijksbijdrage in het provincie- en gemeentefonds (Rijksoverheid.nl, 2012). De financiering gaat met de komst van de Omgevingswet weer veranderen. Bodemsanering wordt onderdeel van de omgevingsvisie en daarmee van duurzame gebiedsontwikkeling. De verwachting is dat de omgevingswet in 2018 wordt ingevoerd. Er komt dan een ander financieel, juridisch en organisatorisch instrumentarium. Het streven is dat er een rijksbudget blijft in de vorm van een stimuleringsbudget. Hoe dat eruit gaat zien is nog niet zeker (Kiela, 2012).

Sorteren van afval in relatie tot regelgeving

Een punt van discussie is dat bij sanering van stortplaatsen regels kunnen gelden die van belang zijn voor saneringsplannen, zoals het eventueel verplicht sorteren van afval. Wanneer bij urban mining bouw- en slooapval (BSA) vrijkomt, dan zou dit volgens het 2e landelijk afvalbeheerplan (LAP2) eerst gesorteerd moeten worden. Wanneer dit inderdaad zo is zullen hiervoor specifieke voorschriften moeten worden opgenomen in de vergunning. Omdat bouw- en slooapval (BSA) uit een oude stortplaats moeilijk van het huishoudelijk (rest)afval en bedrijfsafval te onderscheiden is, zal in de praktijk al het afval of in elk geval een groot deel gesorteerd moeten worden.
Opties voor thermische conversie na sortering
Voor thermische conversie van restmateriaal na sortering van afval kunnen wij de discussie als volgt samenvatten: Bij bestaande AVI’s moet waarschijnlijk het dubbele poorttarief worden betaald, omdat de verbrandingswaarde van het restmateriaal stijgt naar ongeveer 18 MJ/kg door het uitsorteren van de inerte materialen (fijne fractie, metalen en granulaat) (Schuttenbeld et al., 2007). Een eigen installatie, speciaal ontworpen voor het omzetten van het hoogcalorische restmateriaal in energie, lijkt dan een reële optie. Voorzichtigheid is echter geboden, blijkt uit het voorbeeld van Bavin. Deze installatie is in 2011 failliet gegaan nog voordat deze in gebruik was genomen (Dagblad van het Noorden, 2011). Door overcapaciteit op de markt voor afvalverbranding in Nederland lijkt een eigen kleinschalige installatie voor het omzetten van het restmateriaal in energie onrendabel.

Samenstelling stortplaatsen en rentabiliteit voor sortering en verbranding van afval
De tabellen in §3.3 laten zien dat de kosten en baten voor de verwerking van afval bekend zijn. Er zit echter een grote bandbreedte in de samenstellingspercentages van het vrijkomende materiaal en daarmee in de te verwachte rentabiliteit. Voor de haalbaarheid is de samenstelling van de stortplaats daarom dan ook van cruciaal belang (Quaghebeur et al., 2013).

Opties voor het realiseren van natuurdoeltypen na sanering
In dit rapport is uitgegaan van het inrichten van oorspronkelijke natuurdoeltypen op percelen waarvan de stortplaats is gesaneerd. Het inrichten van sommige natuurdoeltypen zou moeilijk te realiseren zijn in verband met de milieugevoeligheid voor vermeesting en verzuring (bijvoorbeeld hoogveen- en moerasvegetatie). Aan het inrichten van dergelijke natte natuurdoeltypen zijn hoge kosten verbonden. De hoge kosten voor het inrichten van oorspronkelijke natuur kan leiden tot een verminderd maatschappelijk draagvlak. Het kan een overweging zijn om te kiezen voor een natuurdoeltype dat makkelijker te realiseren is en minder kosten met zich meebrengt. Dit kan het maatschappelijk draagvlak ten goede komen. Daarnaast duurt het vormen van hoogveen eeuwen. Het realiseren van dit natuurdoeltype is dan ook geen realistische optie.

Bij de keuze van een natuurdoeltype dient overigens óók gekeken te worden naar de reeds bestaande natuur. De zilvergroene natuur staat immers in dienst van de goudgroene natuur en dient de effectiviteit en de functionaliteit van deze natuur te ondersteunen. Indien het natuurdoeltype van de eerste voorkeur niet haalbaar is wegens natuur-, milieu of economische aspecten, dan kan mogelijk worden “afgewaardeerd” naar een natuurdoeltype wat wel haalbaar is en past bij de gebiedsindeling.

Pluim met macroverbindingen
Uit een groot aantal stortplaatsen verspreidt zich een pluim met ongewenste macroverbindingen naar het grondwater door neerslag en het uitlogen van de afvalstoffen naar de bodem. Dit is een onwenselijke situatie indien een dergelijke stortplaats ligt nabij een natuurgebied, oppervlaktewater of een landbouwgebied waarbij voor voedselproductie gebruik gemaakt wordt van grondwater (beregening van gewassen) (In het Veld & Krol, 2005a). Dit kan mogelijk een extra argument zijn om een dergelijke stortplaats te saneren. Dit moet nader uitgezocht worden in een casestudie.

Ruilaarheid grond
Grond in de zilvergroene natuur is volgens de saldobiocenadering onderling ruilaar met grond buiten de zilvergroene natuur. De gebiedslinies van de zilvergroene zone zijn dus nog niet hard (Provinciale Staten van Limburg, 2014). Stortplaatsen in de nabijheid van of aansluitend op het NNN zouden dus mogelijk nog wel kunnen vallen in de zilvergroene natuur.

Kostprijs saneren grondwater
De kostprijs van het saneren van grondwater heeft een erg grote bandbreedte in de literatuur. Daarnaast zijn geen normen beschikbaar voor de gemiddelde hoeveelheid grondwater die gesaneerd moet worden. Hierdoor kan geen goede inschatting gegeven worden aan de kosten voor grondwatersanering. Dit zal in een casestudie nader bepaald moeten worden.
Discussie over de gekozen methode

Voordat over is gegaan tot het literatuuronderzoek naar de geschikte MCA-methode is Marc Jansen geraadpleegd, een InCompany Milieuadvies medewerker die reeds ervaring heeft opgedaan met MCA in een ander project. Hij adviseerde ons om bij de keuze voor een geschikte MCA-methode vooral te kijken naar wat onderzoekers in het werkveld16 doen. Een gevolg van deze strategie is dat geen uitputtende inventarisatie is gemaakt van methoden om stortplaatsen te prioriteren. Het zou kunnen dat nog betere methoden bestaan, maar dat die toepassing vinden bij andere onderwerpen in andere disciplines. De actuele bronnen die de geraadpleegde deskundige Carolien Kroze aandroeg (het boek van het Center for International Forestry Research, 1999 en de handleiding van het Department for Communities and Local Government, 2009) hebben in elk geval gezorgd voor een verbreding van het onderzochte werkveld. Het onderzochte werkveld is nog verder verbred door bestudering van Jablonský (2009, 2014a, 2014b, n.d.) uit het werkveld van de econometrie.

Een combinatie van KBA en MCA, zoals beschreven door Van der Zee et al. (2004), is volgens Carolien Kroze niet gebruikelijk. Het is volgens haar beter om de financiële criteria in de MCA op te nemen. Het idee van Van der Zee voor een quick & dirty eerste sortering spreekt ons echter nog altijd aan. Het is ook nodig, omdat bijna negenhonderd stortplaatsen teveel is om te onderzoeken.

Hoewel dus geen KBA meer wordt toegepast voor een snelle eerste sortering, vindt nog altijd een snelle sorting plaats in de MCA door een aantal nominale meten criteria te hanteren die slechts voor een select aantal stortplaatsen waar zijn (tabel 4). Dit is ook een legitieme manier om MCA-criteria toe te passen aldus Albers (1987). De nu gebruikte minimale voorwaarden, vooral ligt in zilvergroene natuur beperkt het aantal stortplaatsen sterk. Misschien liggen er buiten de zilvergroene natuur stortplaatsen met meer potentieel, maar dat weten wij nu niet.

Weging van criteria voor het tellen van prioriteiten is van belang als onderdeel van besluitvorming, maar blijft een subjectieve aangelegenheid. Om dat bezwaar weg te nemen of in elk geval te reduceren hebben wij verschillende weegsets gemaakt: (1) een weegset zonder hiërarchie, (2) een weegset met hiërarchie en gelijke weging, (3) een weging die bepaald is door de onderzoekers, (4) een weging door de opdrachtgever en een (5) consolidatie van die laatste twee wegingen (3 en 4). Door deze prioritering op basis van vijf weegsets is ook gelijk een gevoeligheidsanalyse uitgevoerd, stap 8 van de gebruikte MCA procedure. Het blijkt dat voor alle weegsets dezelfde twee stortplaatsen het hoogst geprioriteerd worden. Die twee stortplaatsen lijken ons daardoor het meest geschikt om het gestelde doel te bereiken: natuurontwikkeling in de zilvergroene natuur door urban mining.

MCA en draagvlak

Exploitatie

Het exploitatiebegrotingsmodel (onderwerp van deelvraag 4) geeft een eerste idee van de financiële haalbaarheid en laat een gemiddeld negatief resultaat zien voor de top 4 van stortplaatsen (tabel 16-tabel 19 in §3.6.1). Enkele gegevens ontbreken zoals de uitgespaarde kosten voor nazorg en beheer, omdat die niet op grond van basisgegevens kunnen worden berekend. Ook de subsidie opties zijn nog niet uitputtend ingevuld en mogelijke kosten voor grondwatersanering ontbreken. Nader onderzoek zou gericht moeten zijn op het sluitend maken van de exploitatiebegroting voor een specifieke stortplaats. De NFML heeft nu een handvat in dit model om dat aan te pakken in dialoog met potentiële partners.

Op dit moment is de provincie Limburg al bezig met grondwateronderzoek bij oude stortplaatsen (Patrick van de Heisteg, persoonlijke communicatie, 13 april 2015). De uitkomst van dat onderzoek biedt mogelijk nog kansen voor een urbanminingproject.
Bij elke sanering van een stortplaats kunnen de bevindingen uit deze rapportage worden meegenomen. Als uit onderzoek blijkt dat een stortplaats vanwege grote risico’s moet worden gesaneerd, dan kan de opbrengst (tabel 20) van urban mining wel eens doorslaggevend zijn.

4.2 Conclusies
Wat zijn de mogelijkheden om de stortplaatsen in de zilvergroene zones van het NNN/de EHS c.q. Ecologische Hoofdstructuur (EHS) in de provincie Limburg economisch rendabel te maken via urban mining en wat zijn - na sanering - de mogelijkheden om de oorspronkelijke natuur te herstellen?

Het blijkt mogelijk om een lijst te genereren van stortplaatsen die in de zilvergroene natuur liggen van het NNN/de EHS. 34 van de bijna negenhonderd stortplaatsen liggen in de zilvergroene natuur. 16 stortplaatsen blijken vervolgens op basis van een beperkt aantal criteria te prioriteren. Daarbij wordt de beperking van het aantal criteria ingegeven door een wens van de opdrachtgever, maar vooral door de beperkte informatie over de stortplaatsen. Veel criteria kunnen niet voor alle stortplaatsen gemeten worden en zijn daarmee niet geschikt. Het blijkt mogelijk een prioritering uit te voeren waarbij de economische waarde af wordt gewogen tegen natuurwaarden en milieuwaarden.

Uit het onderzoek komt het sorteren en hergebruiken van de vrijkomende materialen uit de stortplaats als beste oplossing naar voren. De sorteerkosten kunnen voor een deel betaald worden uit de baten van ferro en non-ferrometalen, die vrijkomen na het sorteerperso. Deze baten zijn onder andere afhankelijk van de kosten van de gekozen sorteertechnieken, de efficiency van de materiaalterugwinning, de actuele grondstofprijzen en de samenstelling van de stortplaats. Het onderzoek blijkt dat de samenstelling van een stortplaats en dus de opbrengstverwachting een grote bandbreedte heeft. De samenstelling van de stortplaats is daarmee van cruciaal belang voor de haalbaarheid (Kaartinen et al., 2013; Quaghebeur et al., 2013). Een eigen kleinschalige installatie voor omzetting van de overblijvende sorteerresiduen in energie is gezien het (negatieve) voorbeeld van Bavin niet aan te bevelen. Het afvoeren van het restmateriaal naar een bestaande AVI lijkt de meest reële optie. De nieuwe verbrandingsbelasting heeft hierbij een remmend effect op urban mining, omdat ook het afval dat vrijkomt bij urban mining bij verbranding wordt belast.

Wenselijke natuur is de natuur zoals die van oorsprong voorkwam in de provincie Limburg, voor de invloed van de mens. Veel van de gewenste natuuroiletypes zijn gevoelig voor verzuring, verdroging of vermesting. De samenhang tussen de herstelde natuurwaarden en de activiteiten in de omgeving dienen dan ook niet met elkaar te concurreren. Het inschatten van de ecologische haalbaarheid voor het opnieuw inrichten van deze natuuroiletypes moet ingeschat worden met behulp van een brede milieuanalyse. De analyse is hier niet uitgevoerd omdat het ons aan de tijd ontbreekt.

Om de haalbaarheid van urban mining beter in te schatten is voor de hoogst geprivilegierde stortplaatsen het exploitatiebegrotingsmodel toegepast. Het exploitatiebegrotingsmodel is een format dat nog aangevuld dient te worden. Op grond van beschikbare basisgegevens volgt uit het huidige exploitatiebegrotingsmodel een schatting van het netto resultaat van urban mining. Gemiddeld voorspelt het model een negatief resultaat, maar dat beeld wordt waarschijnlijk anders wanneer de basisgegevens worden aangevuld met specifieke en actuele stortplaats gegevens zoals de kosten van nazorg en beheer. Doordat de exploitatiebegroting nog niet compleet is en het noodzakelijke milieuonderzoek voor de specifieke stortplaatsen nog niet compleet en af is kan nog geen sluitend oordeel worden geveld over de financiële en ecologische haalbaarheid van een urbanminingproject in Limburg.
5. Aanbevelingen

Veldonderzoeken

Gezien het grote aantal stortplaatsen in Limburg, is het niet mogelijk om gedetailleerde saneringsplannen op te stellen. Gedetailleerde analyses van de individuele stortplaatsen vallen buiten het bereik van dit onderzoek. De inhoud is per stortplaats verschillend en afhankelijk van verschillende factoren (Quaghebeur et al., 2013). Voor urban mining is het oppervlak, de inhoud en de samenstelling van belang. Uit de rapporten bleek dat representatieve bemonstering van het stortmateriaal nauwelijks mogelijk is. Bovendien is het stortmateriaal in oudere stortplaatsen gedeeltelijk veraard of met veel bodemmateriaal vermengd. In de praktijk worden stortplaatsen beoordeeld op basis van informatie over het gestorte materiaal (In het Veld & Krol, 2005a). Wij adviseren om na de voorselectie voor urban mining op basis van de multicriteria-analyse (MCA) een nadere analyse uit te voeren naar de inhoud van de stortplaats. Het betreft dus een snelle check om de geschiktheid te bepalen en daarna een uitgebreid onderzoek naar de inhoud van de stortplaats. Het onderzoek zou in elk geval moeten bestaan uit onsite-onderzoek, zoals stap 3 en 4 voorschriven in het model van Van der Zee (2004) (figuur wp4.a1-2). Dit onderzoek is noodzakelijk om de financiële en ecologische haalbaarheid in te schatten. De gegevens die daaruit komen kunnen gebruikt worden om te bepalen of de stortplaats geschikt is voor urban mining. Met een dergelijk onderzoek wordt getracht om (a) grote milieutechnische en financiële tegenslagen te voorkomen en (b) eventuele risico’s bij de uitvoering te beperken (Krook et al., 2012; Quaghebeur et al., 2013). Het resultaat van het onderzoek is nodig voordat urban mining in Nederland op grote schaal zal worden toegepast, omdat het een eis is bij financiers (deel 2 bijlage WP4.B3). De resultaten zorgen – naar verwachting – voor meer financiële zekerheden bij toekomstige ondernemingen en dat kan de drempel verlagen om urban mining projecten te starten.

Verouderde gegevens m.b.t. eigendom stortplaatsen

De kosten voor sanering en de herinrichting van de voormalige stortplaatsen zijn voor de eigenaar. Voor voornoemde 16 stortplaatsen (Bijlage WP4.B2) zijn dat in 4 gevallen de gemeenten. De andere 12 stortplaatsen zijn in handen van bedrijven en particulieren. Deze eigenarenstatus is echter gebaseerd op de rapporten die omstreeks de eeuwwisseling zijn opgesteld. Wij bevelen daarom aan om bij selectie van deze stortplaatsen het kadaster te raadplegen.

Uitvoeren van een levenscyclusanalyse (LCA)

Intrinsieke waarde natuur/milieu wordt in dit rapport niet behandeld. Dit is onze bewuste keuze geweest om het onderzoek af te bakenen. Om een vergunning te krijgen zal conform de Richtlijn Stortplaatsen een LCA moeten worden uitgevoerd. Dit geeft ook een goed inzicht in de te verwachten milieueffecten.

Stimuleringsplannen voor Natuur, Bos en Landschap

Bij het definiëren van de gewenste natuurdoeltypen is uitgegaan van het Handboek Streefbeelden voor Natuur en Water in Limburg (Krekels et al., 2003). Dit handboek is gebruikt voor de toetsing van de stimuleringsplannen in Limburg. Voor het uitwerken van een casestudie verdient het de aanbeveling de Stimuleringsplannen voor Natuur, Bos en Landschap te gebruiken.

Stortplaatsen zijn in handen van bedrijven en particulieren. Deze eigenarenstatus is echter gebaseerd op de rapporten die omstreeks de eeuwwisseling zijn opgesteld. Wij bevelen daarom aan om bij selectie van deze stortplaatsen het kadaster te raadplegen.

Het effect van stortbelasting

Sinds 1 januari 2015 is de belasting op het storten en verbranden van afvalstoffen € 13,- per 1000 kilogram afval. Afval dat wordt gerecycled, wordt niet belast (Duurzaambedrijfsleven.nl, 2014). Wil urban mining echt succesvol worden dan is een uitzondering op deze stortbelasting voor urban mining wenselijk. Daar moet de politiek voor zorgen. Wij bevelen aan om samen met andere belanghebbenden een brief op te stellen gericht aan de staatssecretarissen Eric Wiebes van Financiën en Wilma Mansveld van Milieu, met het verzoek voor urban mining een uitzondering te maken op de belastingmaatregel aangaande het storten en verbranden van afvalstoffen.

Gesprek aangaan met potentiële partners

Dit rapport biedt aanknopingspunten om het gesprek aan te gaan met potentiële partners, omdat het al enig inzicht geeft in de haalbaarheid en risico’s. De gesprekken zouden gericht moeten zijn op het (a) sluitend maken van de exploitatiebegroting, (b) actueel milieuvorderzoek in/rondom de hoogst geprioriteerde stortplaatsen en (c) de resultaten van milieuvorderzoek.
Literatuur

De Minister van Volksgezondheid en Milieuhygiëne. (1979). *Wet milieubeheer.*

Milieuadvies

Milieuadvies

Urban mining Limburg - Groen voor Afval p. 40 van 75
Milieuadvies

Evaluatie van betekenis van de Biomassa Centrale Moerdijk voor de oplossing van het mestoverschot.

Bijlagen

Bijlage WP1.A Deskresearchdata

WP1.A1 Wetgeving

Deze details uit WP1 zijn relevant in verband met de haalbaarheid van een urbanminingproject.

Europese richtlijnen

Voorkーズbeleid voor afvalverwijdering

In Nederland gebruikt men de zogenaamde 'ladder van Lansink' (Tweede Kamer, 1979-1980) waarbij het storten van afval wordt gezien als de minst wenselijke vorm van afvalverwijdering na preventie van afvalproductie. De ladder van Lansink ordent de verschillende vormen van afvalbeheer van het meest milieuvriendelijke tot het meest milieubelastende. De voorkeursvolgorde naast preventie is: hergebruik - verbranden - storten. Deze prioriteitsvolgorde staat ook vastgelegd in artikel 10.4 van de Wet milieubeheer. (De Minister van Volksgezondheid en Milieuhigiëne, 1979)

Reeds gestort afval dat via urban mining wordt gewonnen als grondstof, kan op de ladder van Lansink vervolgens alleen maar stijgen als het bijvoorbeeld wordt gerecycled, gecomposteerd of verbrand ten behoeve van energiewinning. Urban mining past daarmee in het voorkeursbeleid voor afvalverwijdering binnen Nederland.

Beperking stortplatssanering door wet en regelgeving

De huidige wet- en regelgeving maakt het ontginnen van voormalige stortplaatsen voor urban mining en het verplaatsen van afvalstoffen afkomstig van voormalige stortplaatsen niet gemakkelijk. Na het heropenen en opnieuw in gebruik nemen van een voormalige stortplaats, zijn gelijk de regels van de volgende wetten van toepassing: de Wet milieubeheer, de Wet algemene bepalingen omgevingsrecht en het Besluit omgevingsrecht. Het Besluit stortplaatsen en stortverboden afvalstoffen (Bssa) (Ministerie van Economische Zaken, 1997) bevat voor diverse categorieën afvalstoffen een stortverbod, alsmede bepalingen waaraan stortplaatsen moeten voldoen.

In het kader van het Stortbesluit bodembescherming (Bodemrichtlijn.nl, 2015b) dien je vervolgens rekening te houden met de volgende richtlijnen:
- Richtlijn drainagesystemen en controlestelsels grondwater voor stort- en opslagplaatsen;
- Richtlijn onder afdcichtingen voor stort- en opslagplaatsen;
- Richtlijn voor dichte eindafwerking van op afval- en reststofbergingen;
- Richtlijn geohydrologische isolatie van bestaande stortplaatsen;
- Ontwerp-procedure grondwatermonitoring stortplaatsen.

Bij het ontginnen van een stortplaats komen echter ook stoffen vrij die om verschillende redenen alleen maar gestort mogen worden. (Denk daarbij bijvoorbeeld aan asbest.) De consequentie is dat bij het verplaatsen van afval buiten de grenzen van de oude stortplaats er formeel sprake is van een nieuwe stortactiviteit. Hieraan zijn grote bezwaren en beperkingen verbonden vanuit huidige wetgeving (Stortbesluit), door het inwerkingtreden van bovengenoemde richtlijnen, beleid en kader van het Landelijk afvalbeheerplan 2009 - 2021 (Ministerie van Infrastructuur en Milieu, 2014a).
Beperking stortplaatssanering door groene wetten

Bij de voormalige stortplaatsen kunnen de volgende beperkingen gelden:

1. beperkingen in het kader van Natura 2000 instandhoudingsdoelstellingen of
2. beperkingen die voortvloeien uit de Flora-en Faunawet ten aanzien van de mogelijke effecten van de activiteit urban mining.

Volgens Artikel 19d van de Natuurbeschermingswet 1998 is het verboden zonder vergunning, handelingen te verrichten die instandhoudingsdoelstellingen van de natuurlijke habitats en de habitats van soorten in een Natura 2000-gebied kunnen verslechtern, of een significant verstorend effect kunnen hebben op de soorten waarvoor het gebied is aangewezen. Zodanige projecten of andere handelingen zijn in elk geval projecten of handelingen die de natuurlijke kenmerken van het desbetreffende gebied kunnen aantasten (Overheid.nl, 2015b).

De Flora- en Faunawet heeft als doel de bescherming en het behoud van de gunstige staat van instandhouding in van het wild levende planten- en diersoorten. Deze bescherming is vastgelegd in een aantal verbodsbepalingen waarvoor onder voorwaarden vrijstelling kan worden verkregen.

Wie kent niet het voorbeeld van de Korenwolf die in 2000 de bouw van bedrijventerrein Avantis bij Heerlen stillegde? (Elsevier, 2007)

Wet Bodembescherming

Binnen de Wet Bodembescherming is artikel 28 Wbb (Overheid.nl, 2015c) van belang. Die luidt:
"Degene die voornemens is de bodem te saneren dan wel handelingen te verrichten ten gevolge waarvan de verontreiniging van de bodem wordt verminderd of verplaatst, doet van dat voornemen melding bij Gedeputeerde Staten van de betrokken provincie."

Bij herschikking en verplaatsing van afval binnen de eigen grenzen van een oude stortplaats zou urban mining kunnen worden uitgeoefend als onderdeel van een saneringsplan in het kader van de wet Bodembescherming (Wbb).

Stortbelasting

Een bijkomend probleem is dat een heffing in het kader van de Wet belastingen op milieugrondslag kan worden opgelegd bij het her-storten van afval dat is vrijgekomen bij het afgraven van een voormalige stortplaats. Deze stortbelasting was in januari 2012 afgeschaft, maar is in april 2014 opnieuw geïntroduceerd. Hierdoor wordt de oorspronkelijk positieve milieuemaatregel (urban mining) ten onrechte zwaar belast. Vanaf 2015 moeten bedrijven en gemeenten ook belasting gaan betalen over het verbranden van afval. Sinds 1 januari 2015 is de belasting op afvalstoffen € 13 per 1000 kilogram afval. Dit tarief geldt voor afval dat wordt gestort of verbrand. Afval dat wordt gerecycled, wordt niet belast. De staatssecretarissen Eric Wiebes van Financiën en Wilma Mansveld van Milieu hebben de verbranding in afvalenergiecentrales belast omdat dat eerlijker is ten opzichte van bedrijven en gemeenten die werk maken van recycling. (DuurzaamBedrijfswetten.nl, 2014)

WP1.A2 Beschikbare stimuleringsmaatregelen

Deze details uit WP1 zijn relevant in verband met de haalbaarheid van een urban mining project. Ze zijn/worden - voor zover mogelijk - toegepast in de exploitatiebegrotingsexcel (bijlage WP4.B3).

Crowdfunding

Crowdfunding is een alternatieve manier om financiële middelen bij elkaar te krijgen om bijvoorbeeld urban mining te financieren. De financiering gaat dan niet via een bank, maar komt tot stand door direct contact tussen publieke investeerders en het urban mining project.

Om de benodigde financiering bij elkaar te krijgen kun je urban mining op een platform aanbieden en daarbij vermelden hoeveel geld er nodig is om de stortplaats weer terug te brengen naar de oorspronkelijke natuurwaarden. Crowdfunding is gebruikelijk bij filantropische doeleinden waarbij iedereen kan investeren in het project. De vele kleine bedragen financieren uiteindelijk het project. De meest interessante manieren van crowdfunding voor urban mining zijn:
Milieuadvies

- Vragen om donaties voor een leefbaarder en aantrekkelijkere omgeving.
- Sponsoring: Het verschil tussen donaties en sponsoring is dat de investeerder beloning in het vooruitzicht wordt gesteld. Denk aan een boom, een exemplaar van een boek of naamvermelding in een blad. (Wikipedia.org, 2015)

Rijksfinanciering
Om de financiering van bodemsaneringen via de Wbb meer decentraal te organiseren, is in juli 2009 afgesproken dat deze financiering in het vervolg zou plaatsvinden via het provincie- en gemeentefonds. Deze rijks subsidie was opgenomen in de regeling Investeringsbudget landelijk gebied (ILG) (Bodemrichtlijn.nl, 2015a). Het doel van het ILG was om de provincies, de gemeenten en de waterschappen te financieren bij het realiseren van de rijsdoelen voor de fysieke inrichting van het landelijk gebied, als onderdeel van een integrale regionale gebiedsontwikkeling. In 2012 is het ILG afgebond. Tegenwoordig ontvangen bevoegde overheden middelen voor de aanpak van bodemverontreiniging via de decentralisatie uitkering 'bodem', een gelabelde uitkering in het provincie- en gemeentefonds (Rijksoverheid.nl, 2012). In Limburg zit de gelabelde uitkering in de Subsidieverordening inrichting landelijk gebied Limburg 2015 e.v. (Provincie Limburg, 2015). De Rijksfinanciering gaat met de komst van de Omgevingswet in 2018 wel veranderen. Er komt dan een ander financieel, juridisch en organisatorisch instrumentarium. Er wordt gestreefd naar een rijsbudget in de vorm van een stimuleringsbudget. Dat is echter nog niet zeker (Kiela, 2012).

Subsidieverordeningen Provincie Limburg (SILG)
In de Subsidieverordening inrichting landelijk gebied Limburg 2015 e.v. (Provincie Limburg, 2015) staan mogelijkheden voor het verkrijgen van subsidie voor activiteiten die bijdragen aan het bereiken van de doelstellingen van het gebiedsgerichte beleid. Onder de doelen in de bijlage van deze verordening staan onder andere de recreatieve inrichting in kerngebieden in de goudgroene natuur, de functiewijziging inrichting in de zilvergroene natuur zones en de aanleg en herstel van natuurlijke, half natuurlijke en cultuurhistorische landschapseenheden. Voor de recreatieve inrichting in kerngebieden in de goudgroene natuur geldt een maximum van 75% van de subsidiabele kosten en maximaal € 100.000,00 per project. Voor de functiewijziging inrichting in de zilvergroene natuur zones geldt een maximum van 50% van de kosten van de inrichtingsmaatregelen gericht op ontwikkeling van natuur die past in de provinciale natuurambities zoals vastgelegd in het Provinciaal Natuurbeheerplan. De subsidie bedraagt maximaal € 30.000,00 per ha. Voor de aanleg en herstel van natuurlijke, half natuurlijke en cultuurhistorische landschapseenheden geldt een maximum van 80% van de subsidiabele kosten. Voor investeringen door ondernemers (inclusief landbouwers) bedraagt de subsidie echter maximaal 40% van de totale subsidiabele kosten. De totale steun aan een onderneming is daarnaast maximaal € 200.000,00 over een periode van 3 belastingjaren. Echter, in de SILG zijn kosten van bodemsanering uitgezonderd voor zover verhaal mogelijk is op de vervuiler of als een beroep kan worden gedaan op fondsen.

Financiering voor energiezuinige en milieuvervriendelijke technieken
Deze paragraaf heeft een relatie met de resultaten van werkpakket 2, waarin de bestaande technieken voor urban mining onder de loep worden genomen. De keuze voor een energiezuinige en milieuvriendelijke techniek kan rekenen op fiscaal voordeel. In de Energie- en Milieulist 2015 zijn energiezuinige en milieuvervriendelijke technieken opgenomen die fiscaal voordeel genieten (RVO.nl, 2015). In de lijst zijn de volgende, voor urban mining relevante, energiezuinige en milieuvriendelijke technieken opgenomen:
- Afval gestookte installaties bestemt voor het nuttig aanwenden van warmte die vrijkomt bij het verstoken van afval, waarvan het totaal energetisch rendement tenminste 55% bedraagt. Het maximum investeringsbedrag dat voor energie-investeringsaftrek in aanmerking komt bedraagt € 400 per kW totaal vermogen;
- Apparatuur voor recycling van grondstoffen bestemd voor het terugbrengen van afval tot een grondstof;
- Pyrolyse-installaties voor recycling van afvalstoffen;
- Installaties voor het vervaardigen van bouwstoffen uit afvalstroom.

WP1.A3 Overig, van belang voor haalbaarheid
In de Wbb wordt voor bodemsaneringen onderscheid gemaakt tussen bestaande gevallen (gevallen ontstaan voor 1 januari 1987), nieuwe gevallen (gevallen ontstaan na 1 januari 1987) en ongewone voorvallen. Bij verontreinigingen die zijn ontstaan na 1987 moet de vervuiler betalen voor de schoonmaak. De saneringsparagraaf Wbb is van toepassing op de bestaande gevallen.
(Overheid.nl, 2015c). De totale sanering is in de melding begroot en de eventuele nazorg wordt hierin beschreven. De begroting omvat een schatting van de kosten van de sanering en een overzicht van de daarvoor beschikbare middelen (Art. Wbb 39 lid 1 sub b). Bij verontreinigde locaties die geen spoed zijn, is de aanpak gericht op beheer en sanering op een geschikt tijdstip, samengaan met de herinrichting van het gebied. Marktpartijen zouden 75% van de kosten moeten dragen; in de praktijk is dit 50% (Compendium voor de Leefomgeving, 2009). Marktpartijen zijn bedrijven, particulieren, maar ook overheden als eigenaar van de stortplaatsen. De andere 50% kan worden gefinancierd met de Subsidieverordening Inrichting Landelijk Gebied Limburg 2015 (Provincie Limburg, 2015).
Bijlage WP2.B Grootschalige thermische conversie

WP2.B1 Nederlandse AVI's en de R1 status

Een grootschalige AVI kan afhankelijk van de gekozen techniek een maximaal elektrisch rendement behalen van 20 tot 33% (Jones et al., 2013). In richtlijn 2008/98/EG wordt een onderscheid gemaakt tussen de D10 status (afvalverbranding met een laag rendement of zonder energieopwekking) en de R1 status (afvalverbranding met een hoog rendement als nuttige toepassing). AVI's met de R1 status die voldoen aan de eisen voor nuttige toepassing mogen afval importeren uit andere Europese landen. Alle Nederlandse AVI's hebben de R1 status (zie tabel 1). De grenswaarde is de drempel voor het verkrijgen van de R1 status. Voor oudere AVI’s is de drempel 0,6, voor nieuwe AVI’s 0,65. De R1 waarden van elke AVI worden elk jaar door de overheid vastgesteld en zijn in de onderstaande kolommen te vinden.

Tabel 1 Capaciteit en R1 status van Nederlandse AVI's (bron: www.lap2.nl)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Attero, Moerdijk</td>
<td>1.000</td>
<td>0,6</td>
<td>1,01</td>
<td>1,05</td>
<td>1</td>
<td>1,03</td>
<td>R1</td>
</tr>
<tr>
<td>AEB HRC, Amsterdam</td>
<td>500</td>
<td>0,6</td>
<td>0,91</td>
<td>0,92</td>
<td>0,94</td>
<td>0,95</td>
<td>R1</td>
</tr>
<tr>
<td>EEW, Delfzijl</td>
<td>384</td>
<td>0,6</td>
<td>0,75</td>
<td>0,83</td>
<td>1,04</td>
<td>1,09</td>
<td>R1</td>
</tr>
<tr>
<td>ARN, Nijmegen</td>
<td>310</td>
<td>0,6</td>
<td>0,86</td>
<td>0,82</td>
<td>0,85</td>
<td>0,86</td>
<td>R1</td>
</tr>
<tr>
<td>Twence lijn 3, Hengelo ***</td>
<td>289</td>
<td>0,6</td>
<td>0,88</td>
<td>0,75</td>
<td>0,82</td>
<td>0,86</td>
<td>R1</td>
</tr>
<tr>
<td>REC, Harlingen</td>
<td>280</td>
<td>0,65</td>
<td>1</td>
<td>0,76</td>
<td>0,76</td>
<td>0,78</td>
<td>R1</td>
</tr>
<tr>
<td>Twence lijn 3, Hengelo ***</td>
<td>289</td>
<td>0,6</td>
<td>0,88</td>
<td>0,75</td>
<td>0,82</td>
<td>0,73</td>
<td>R1</td>
</tr>
<tr>
<td>Twence, lijnen 1 en 2, Hengelo ***</td>
<td>363</td>
<td>0,6</td>
<td>0,79</td>
<td>0,76</td>
<td>0,74</td>
<td>0,73</td>
<td>R1</td>
</tr>
<tr>
<td>Twence, lijnen 1 en 2, Hengelo ***</td>
<td>363</td>
<td>0,6</td>
<td>0,79</td>
<td>0,76</td>
<td>0,74</td>
<td>0,68</td>
<td>R1</td>
</tr>
<tr>
<td>Sita, Roosendaal</td>
<td>336</td>
<td>0,6</td>
<td>0,75</td>
<td>0,7</td>
<td>0,76</td>
<td>0,76</td>
<td>R1</td>
</tr>
<tr>
<td>AEB AEC, Amsterdam</td>
<td>850</td>
<td>0,6</td>
<td>0,67</td>
<td>0,71</td>
<td>0,74</td>
<td>0,74</td>
<td>R1</td>
</tr>
<tr>
<td>HVC, Alkmaar</td>
<td>675</td>
<td>0,6</td>
<td>0,69</td>
<td>0,7</td>
<td>0,71</td>
<td>0,72</td>
<td>R1</td>
</tr>
<tr>
<td>Attero, Wijster</td>
<td>624</td>
<td>0,6</td>
<td>0,62</td>
<td>0,66</td>
<td>0,7</td>
<td>0,74</td>
<td>R1</td>
</tr>
<tr>
<td>HVC, Dordrecht **</td>
<td>396</td>
<td>0,6</td>
<td>0,71</td>
<td>0,65</td>
<td>0,64</td>
<td>0,65</td>
<td>R1</td>
</tr>
<tr>
<td>Bavin, Veendam *</td>
<td>26</td>
<td>0,6</td>
<td>0,65</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>R1</td>
</tr>
<tr>
<td>HVC, Dordrecht **</td>
<td>396</td>
<td>0,6</td>
<td>0,71</td>
<td>0,65</td>
<td>0,64</td>
<td>0,51</td>
<td>R1</td>
</tr>
<tr>
<td>AVR, Rozenburg</td>
<td>1.300</td>
<td>0,6</td>
<td>0,62</td>
<td>0,61</td>
<td>0,63</td>
<td>0,62</td>
<td>R1</td>
</tr>
<tr>
<td>AVR, Duiven</td>
<td>400</td>
<td>0,6</td>
<td>0,61</td>
<td>0,62</td>
<td>0,6</td>
<td>0,62</td>
<td>R1</td>
</tr>
<tr>
<td>** Totaal **</td>
<td>8.781</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Deze installatie was niet operationeel in 2011, 2012 en 2013, hierom zijn de waarden voor zomer 2012, zomer 2013 en zomer 2014 niet berekend.

** In 2013 was er een storing bij HVC Dordrecht aan de generator. De waarde van 0,51 betreft het hele jaar 2013 inclusief de periode dat de generator buiten bedrijf was. De waarde van 0,65 betreft de periode betreft de periode dat er geen storing was.

*** In 2013 was er een storing bij de elektriciteitsproductie bij Twence, lijnen 1 en 2. De waarde van 0,68 betreft het hele jaar 2013 inclusief de periode met storing. De waarde van 0,73 betreft de periode dat er geen storing was.

**** In 2013 was er een storing bij de elektriciteitsproductie bij Twence, lijn 3. De waarde van 0,73 betreft het hele jaar 2013 inclusief de periode met storing. De waarde van 0,86 betreft de periode dat er geen storing was.
Voor een R1 status moet (1) het elektrisch rendement groter zijn dan 24,3% of (2) het grootste deel van de warmte moet gedurende het jaar nuttig gebruikt worden of (3) er moet sprake zijn van een combinatie van (1) en (2). Een elektrisch rendement van 25% is de bovengrens voor bestaande AVI’s in Europa. Dit komt overeen met stoomparameters van 40 bar en 400°C en een lucht/brandstof-verhouding λ van 1,6 (Leckner, 2015). De elektrische rendementen liggen normaliter tussen de 18 en 27% (Lamers, Fleck, Pelloni, & Kamuk, 2013). De nieuwe roosterovens van de hoogrendementscentrale (HRC) van het afval- en energiebedrijf (AEB) in Amsterdam met elk een capaciteit van 265.000 ton/jaar voeren de internationale ranglijst aan (Vehlow, 2015). Door herverhitting na een hoge druk stoomturbine, $\lambda=1,4$, stoomparameters van 130 bar en 440°C en andere optimalisaties is het elektrisch rendement van deze ovens 30% (Bogale & Viganò, 2014; Leckner, 2015).

De nieuwste AVI in Nederland is de reststoffenenergiecentrale (REC) in Harlingen met een capaciteit van 280.000 ton afval per jaar en stoomparameters van 90 bar en 465°C (Bosma, 2015).

Figuur 1 REC Harlingen, AVI met een capaciteit van 280.000 ton afval per jaar (Jorritsma Bouw)

Het restafval (grijze container) van de deelnemende Friese gemeenten gaat naar een sorteerinstallatie in Heereneveen. Hier wordt het ONF vergist voor de productie van biogas. De metalen, inerte materialen en plastic worden uit het restafval verwijderd. Het overblijvende RDF gaat naar de REC in Harlingen voor de productie van stoom voor de ernaast gelegen zoutfabriek. In tegenstelling tot conventionele kolen- en gascentrales met een elektrisch rendement van rond de 45% zijn de stoomparameters van AVI’s beperkt om chemische corrosie van de verbrandingsketel te verminderen. Normaal neemt de wanddikte van ketelpijpen in AVI’s af met 0,4 mm per jaar (Bosma, 2015). Dit wordt veroorzaakt door de aanwezigheid van halogenen in het afval, waaronder chloor. Bij verbranding hiervan ontstaan zuren (bij chloor bijvoorbeeld zoutzuur) De ketelpijpen moeten daarom regelmatig worden vervangen. De chemische corrosie bij de REC is bijvoorbeeld 0,7 mm per jaar (Bosma, 2015). Een hogere temperatuur veroorzaakt meer chemische corrosie, waardoor ketelpijpen vaker vervangen moeten worden, of waardoor duurdere materialen of een grotere afstand tussen de oven en de ketelpijpen (zoals bij HRC) toegepast moeten worden. Er zijn dus technische grenzen aan het realiseren van een zo hoog mogelijk rendement bij een met roosteroven uitgeruste conventionele AVI.
WP2.B2 Wervelbedoven

RDF/SRF zonder plastic kan ook verbrand worden voor de productie van duurzame elektriciteit in een biomassa-centrale, bijvoorbeeld zoals in de Biomassa Centrale (BMC) in Moerdijk. Hier wordt jaarlijks 450.000 ton pluimveemest – circa 1/3 deel van de Nederlandse pluimveemest en onderdeel van het mestoverschot – met een gemiddeld vochtgehalte van 44,8% en een lage verbrandingswaarde van 6-8 MJ/kg verbrand, waarbij de opgewekte 250.000 MWh aan elektriciteit wordt verkocht als groene stroom en vrijgesteld is van deelname aan EU ETS. Door de inzet van een jaarlijkse MEP subsidie van € 20 miljoen over een periode van 10 jaar verwacht men in 2018 schuldenvrij te zijn. De installatie kan hierna nog zeker 20 jaar mee en zou zonder subsidie verder kunnen. Het verdienenmodel is echter kwetsbaar en afhankelijk van stijgende stroomprijzen en of er aan de verkoop van as verdiend kan worden (Van Grinsven & Willems, 2013). Vanwege de lage verbrandingswaarde en het hoge vocht-, ammoniak- en nitraatgehalte wordt voor de verbranding van austrian Energy & Environment (AEE) toegepast en de rookgasreiniging is identiek aan die van AVI’s. De installatie heeft een elektrisch vermogen van 31MW en een elektrisch rendement van 28% (Billen, Costa, Van der Aa, Van Caneghem, & Vandecasteele, 2014; Vehlow, 2015). Een speciaal hiervoor ontworpen wervelbedoven is ook zeer geschikt voor het verbranden van hoogcalorisch restmateriaal dat vrijkomt bij bijvoorbeeld urban mining.

Figuur 2 Procesoverzicht van BMC in Moerdijk, een wervelbedoven met een capaciteit van 450.000 ton laagcalorisch afval (6-8 MJ/kg) per jaar (BMC)

WP2.B3 Pyrolyse en vergassing

Pyrolyse of vergassing van afval in plaats van verbranding is een andere mogelijkheid:
- Bij pyrolyse wordt het brandbare materiaal zonder lucht of zuurstof (λ=0) verhit, waarbij onder andere synthegas en pyrolysecokes vrijkomen. Dit principe is bekend van de productie van stadsgas uit steenkool.
- Bij vergassing wordt te weinig stroom, lucht of zuurstof (λ<1) toegevoegd voor volledige verbranding. Hierbij komt voornamelijk synthegas vrij.

Pyrolyse en vergassing staan ook in het BREF-document voor afvalverbranding (Europese Commissie, 2006b). Omdat bij pyrolyse en vergassing geen of geen volledige verbranding plaatsvindt kan de gasreiniging en daarmee het omvang van de installatie aanzienlijk kleiner zijn. Door bij vergassing pure zuurstof te gebruiken kan de installatie zelfs tot een factor tien kleiner zijn (Europese Commissie, 2006b). Het gebruik van pure zuurstof bij vergassing zorgt voor een hogere verbrandingswaarde van het gas, maar is een dure oplossing, omdat een luchtscheidingsinstallatie nodig is voor de productie van zuurstof. Bij hoge temperatuur pyrolyse van huishoudelijk afval
Adviesrapport
InCompany
Milieuadvies

WP2.B4 Plasmatechnologie

Figuur 3 Proefinstallatie op basis van plasmatechnologie van APP (Advanced Plasma Power)
Adviesrapport

Milieuadvies

Secundaire hoge temperatuurverbranding zoals bijvoorbeeld in het eerder genoemde Schwel-Brenn-Verfahren is goedkoper. Het Schwel-Brenn-Verfahren is in Duitsland nooit een succes geworden, maar er staan diverse van dergelijke installaties in Japan. De kosten voor afvalverbranding in Japan zijn door de nadruk op het behandelen van vliegas en minder op energieopwekking met € 300/ton echter aanzienlijk hoger dan in andere ontwikkelde landen (Lamers et al., 2013). Tegenwoordig mag het vliegas in Japan verwerkt worden in bouwmateriaal, mits het aan bepaalde eisen voldoet. In Europa mag het vliegas daarnaast ook als gevaarlijk afval worden gestort (Leckner, 2015).

WP2.B5 Wervelbedvergassing

Voor het behalen van een zo hoog mogelijk rendement kan een nieuwe AVI het beste als wervelbedvergasser worden gebouwd, waarbij het RDF/SRF niet wordt verbrand, maar omgezet wordt in synthesezas (hoofdzakelijk bestaande uit koolstofmonoxide en waterstof) (DEFRA, 2013; Lamers et al., 2013; Panepinto et al., 2014). In een case study van Ricardo-AEA Ltd (2013) wordt voor de Lahti wervelbedvergasser in Finland met innovatieve gasreiniging met keramische filters een bedrag genoemd van € 160 miljoen. Dit is inclusief de conventionele gascentrale waarin het synthesezas wordt verstoekt met een elektrisch vermogen van 50MW en een warmtevermogen van 90MW voor stadsverwarming. Omgerekend is dit € 3200/kWe. De installatie van Metso/Kvaerner en Valmet bestaat uit twee parallelle lijnen voor de verwerking van in totaal 250.000 ton SRF/jaar, wat overeenkomt met ongeveer 500.000 ton/jaar aan ongesorteerd afval. Omgerekend zijn de investeringskosten dus ongeveer € 320/ton geïnstalleerde capaciteit. Deze installatie heeft een bijzonder hoog rendement van ruim 30%, maar is erg duur (zie ook tabel 4 in paragraaf 3.3). De installatie is mede gebouwd in het kader van 7e framework programma, een onderzoeksprogramma van de Europese Unie.

Figuur 4 Procesoverzicht van Lahti wervelbedvergasser in Finland (Ricardo-AEA Ltd)

1. Brandstofopslag (SRF)
2. Wervelbedvergasser
3. Rookgaskoeler
4. Innovatieve gasreiniging met keramische filters
5. Conventionele gascentrale

In een optiedocument van ECN (2006) wordt voor een wervelbedvergasser een investeringsbedrag genoemd van € 2170/kWe met operationele kosten van 3,1 cent/kWh en een levensduur van 15 jaar. Uitgangspunt hierbij is het bijstoken van biomassa in moderne gascentrales (STEG) met een elektrisch vermogen van 85MW en een thermisch vermogen van 155MW. Wanneer het synthesezas in een kolencentrale of zoals bij Lahti een conventionele gascentrale wordt bijgestookt, dan is het elektrisch vermogen ook ongeveer 50MW. De investeringskosten in alleen een wervelbedvergasser
Milieuadvies

Bijlage WP3.A Deskresearchdata

WP3.A1 milieukenmerken per natuurdoeltype

Op basis van Krekels et al. (2003).

<table>
<thead>
<tr>
<th>Natuurdoeltype basis</th>
<th>Vegetatie type</th>
<th>Oorspronkelijk</th>
<th>bodemtype</th>
<th>Grondwaterst.</th>
<th>Milieugevoeligheid</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSSEN</td>
<td>winterreiken-beukenbos</td>
<td>Heuveland</td>
<td>lemig zand, leem</td>
<td>-80 tot -40 cm</td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>winterreiken-beukenbos</td>
<td>Maasterassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>parelgras-beukenbos</td>
<td>Laagland</td>
<td>lemig zand, leem</td>
<td>-80 tot -40 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>parelgras-beukenbos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>Bronbos</td>
<td>Heuveland</td>
<td>lemig zand, leem,</td>
<td>-40 tot 0 cm</td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>Bronbos</td>
<td>Maasterassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>eiken-haagbeukenbos</td>
<td>Heuveland</td>
<td>zand, lemig zand, leem</td>
<td>-80 tot -40</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>eiken-haagbeukenbos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>berken-zomereikenbos</td>
<td>Maasterassen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>berken-zomereikenbos</td>
<td>Laagland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>Vogelkers-essenbos</td>
<td>Heuveland</td>
<td>zand, lemig zand</td>
<td>-80 tot 0 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>Vogelkers-essenbos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>elzenbroekbos</td>
<td>Maasterassen</td>
<td>zand, lemig zand</td>
<td>-80 tot -40 cm</td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>elzenbroekbos</td>
<td>Laagland</td>
<td>leem</td>
<td>-80 tot -40 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>berkenbroekbos</td>
<td>Maasterassen</td>
<td>leem</td>
<td>-40 tot 0 cm</td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>berkenbroekbos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>essen-iepenbos</td>
<td>Maasdal</td>
<td>bodem, lemig leem</td>
<td><-0 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>essen-iepenbos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BOSSEN</td>
<td>zwarte populieren wilgenbos</td>
<td>Maasdal</td>
<td>zavel, klei</td>
<td>-40 tot + 40 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>BOSSEN</td>
<td>zwarte populieren wilgenbos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>doornstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>doornstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>bremstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>bremstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>gagelstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>gagelstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>wilgenstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>wilgenstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>stroomdalwilgenstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STRUWELEN</td>
<td>stroomdalwilgenstrooiplek</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEIDEN</td>
<td>droge heide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEIDEN</td>
<td>droge heide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEIDEN</td>
<td>vochtige heide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HEIDEN</td>
<td>natte heide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOOGVEEN</td>
<td>HOOGVEEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HOOGVEEN</td>
<td>HOOGVEEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>kalkgrasland</td>
<td>Heuvelland</td>
<td>leem, stenig substraat</td>
<td><80cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td>-------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>kalkgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>kalkgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>0</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>lossschraalgrasland</td>
<td></td>
<td>leem, zand, leem</td>
<td><40cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>lossschraalgrasland</td>
<td></td>
<td>zand</td>
<td></td>
<td>Verzuring</td>
<td>2</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>lossschraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>heischraalgrasland</td>
<td>Heuvelland</td>
<td>zand, leem zand</td>
<td><40cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>heischraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>heischraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>2</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>zandschraalgrasland</td>
<td></td>
<td>zand</td>
<td><80 cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>zandschraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>zandschraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>matig voedselrijke grasland</td>
<td></td>
<td>leem, zand zand</td>
<td>-80 tot 0 cm</td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>matig voedselrijke grasland</td>
<td></td>
<td>leem, zavel, klei, veen</td>
<td></td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>matig voedselrijke grasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>2</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>Dotterbloemgrasland</td>
<td></td>
<td>leem zand, klei, veen</td>
<td>-80 tot 0 cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>Dotterbloemgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>Dotterbloemgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>natte schraalgrasland</td>
<td></td>
<td>zand, leem zand</td>
<td>-80 tot 0 cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>natte schraalgrasland</td>
<td></td>
<td>zand</td>
<td><80 cm</td>
<td>Verzuring</td>
<td>2</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>natte schraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>natte schraalgrasland</td>
<td></td>
<td>zand, leem zand</td>
<td>-80 tot 0 cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>natte schraalgrasland</td>
<td></td>
<td>zand</td>
<td><80 cm</td>
<td>Verzuring</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>natte schraalgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>sikkelkluiver-kruisdistelgrasland</td>
<td></td>
<td>zand, zavel</td>
<td><80 cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>sikkelkluiver-kruisdistelgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>sikkelkluiver-kruisdistelgrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>0</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>inundatiegrasland</td>
<td></td>
<td>zand, leem zand</td>
<td>-80 tot 0 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>inundatiegrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>inundatiegrasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>vochtig kruiderij grasland</td>
<td></td>
<td>zand, leem zand</td>
<td><0 cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>vochtig kruiderij grasland</td>
<td></td>
<td>leem, zavel, klei, veen</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>vochtig kruiderij grasland</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>droog kruiderij</td>
<td></td>
<td>zand, leem zand</td>
<td><40cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>droog kruiderij</td>
<td></td>
<td>leem, zavel, klei, veen</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>GRASLANDEN</td>
<td>droog kruiderij</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>0</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>klein zeggenmoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>klein zeggenmoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>klein zeggenmoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>klein zeggenmoeras</td>
<td>Maasterassen</td>
<td>klei of veen</td>
<td></td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>klein zeggenmoeras</td>
<td>Maasterassen</td>
<td>klei of veen</td>
<td></td>
<td>Verzuring</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>klein zeggenmoeras</td>
<td>Maasterassen</td>
<td>klei of veen</td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>kalkmoeras</td>
<td>Maasterassen</td>
<td>veen</td>
<td>-40 tot +40 cm</td>
<td>Vermesting</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>kalkmoeras</td>
<td>Maasterassen</td>
<td>zand, leem zand</td>
<td><80 cm</td>
<td>Verzuring</td>
<td>2</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>kalkmoeras</td>
<td>Maasterassen</td>
<td>zand, leem zand</td>
<td><80 cm</td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>nietmoeras</td>
<td>Maasterassen</td>
<td>leem, zavel</td>
<td>>40 cm</td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>nietmoeras</td>
<td>Laagland</td>
<td>klei of veen</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>nietmoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>grote zeggenmoeras</td>
<td>Maasterassen</td>
<td>klei of veen</td>
<td></td>
<td>Vermesting</td>
<td>2</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>grote zeggenmoeras</td>
<td>Laagland</td>
<td>klei of veen</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>grote zeggenmoeras</td>
<td>Maasterassen</td>
<td>klei of veen</td>
<td></td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>inundatiemoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Vermesting</td>
<td>1</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>inundatiemoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>MOERASSEN</td>
<td>inundatiemoeras</td>
<td>Maasterassen</td>
<td>zand, leem, veen</td>
<td>>40cm</td>
<td>Verdroging</td>
<td>3</td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>droge ruigte</td>
<td>zand, leem, zavel</td>
<td><80 cm</td>
<td>Vermesting</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>droge ruigte</td>
<td>klei</td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>droge ruigte</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>0</td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>vochtige oeverruigte</td>
<td>zand, leem, zavel</td>
<td>>80 cm</td>
<td>Vermesting</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>vochtige oeverruigte</td>
<td>klei, veen</td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>vochtige oeverruigte</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>2</td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>verbindingruigte</td>
<td>droge matig voedsel- -rijke bodems</td>
<td><0 cm</td>
<td>Vermesting</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>verbindingruigte</td>
<td></td>
<td></td>
<td></td>
<td>Verzuring</td>
<td>0</td>
</tr>
<tr>
<td>RUIGTEN</td>
<td>verbindingruigte</td>
<td></td>
<td></td>
<td></td>
<td>Verdroging</td>
<td>0</td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op kalk</td>
<td>stenig substraat</td>
<td>Vermesting</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------</td>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op kalk</td>
<td></td>
<td>Verzuring</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op kalk</td>
<td></td>
<td>Verdroging</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op zand</td>
<td>zand < 80 cm</td>
<td>Vermesting</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op zand</td>
<td></td>
<td>Verzuring</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op zand</td>
<td></td>
<td>Verdroging</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op zand</td>
<td>zand, leemig zand > 80 cm</td>
<td>Vermesting</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op zand</td>
<td></td>
<td>Verzuring</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op zand</td>
<td></td>
<td>Verdroging</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op kalk</td>
<td>stenig substraat <-80 cm tot >+40 cm</td>
<td>Vermesting</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op kalk</td>
<td></td>
<td>Verzuring</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op kalk</td>
<td></td>
<td>Verdroging</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op klei</td>
<td>klei <-40 cm tot > 40 cm</td>
<td>Vermesting</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op klei</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Pionier op klei</td>
<td></td>
<td>Verdroging</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akkers</td>
<td>kalkrijke bodem <-80 cm</td>
<td>Vermesting</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akkers</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akkers</td>
<td></td>
<td>Verdroging</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akker</td>
<td>kalkarm zand <-80 cm</td>
<td>Vermesting</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akker</td>
<td></td>
<td>Verzuring</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akker</td>
<td></td>
<td>Verdroging</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akker</td>
<td>vochtig zware bodem <-80 cm tot 0 cm</td>
<td>Vermesting</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akker</td>
<td></td>
<td>Verzuring</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PIONIERGEMEENSCHAPPEN</td>
<td>Kruidenrijke akker</td>
<td></td>
<td>Verdroging</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
WP3.A2: Toelichting op bodemsaneringstechnieken

Sanering van grond kan middels afgraving en behandeling van de grond geschieden of via in situ technieken wanneer afgraving niet mogelijk is. In deze bijlage worden eerst de technieken genoemd voor afgraven en behandelen van de grond. Vervolgens worden de in situ technieken behandeld.

Afraven en behandelen van de grond.

Thermische reiniging is geschikt voor het verwijderen van organische verontreinigingen en sommige anorganische verontreinigingen als cyaniden en kwikverbindingen. Deze techniek kan de vervuilende stoffen weer onder de grenswaarden krijgen ongeacht de ingangswaarden.

Natte reiniging is geschikt het reinigen van organische en anorganische verbindingen en is daarom bij uitstek geschikt als beide verontreinigingen als een cocktail aanwezig zijn.

Biologische reiniging zet aromatische koolwaterstoffen en olie om in water en co².

Immobilisatie technieken zijn gebaseerd op het toevoegen van anorganische of organische bindmiddelen, chemische fixatie en thermische technieken. Thermische technieken zijn met name geschikt voor mixen bestaande uit verschillende verontreinigingen. De eerder genoemde technieken richten zich met name op grond die met zware metalen of cyaniden is vervuild (Bodemrichtlijn.nl, 2015c).

De volgende In Situ Technieken zijn beschikbaar.

Biologische afbraak
Door het inbrengen van chemische verbindingen in de bodem kan de aerobe of anearobe afbraak door microorganismen worden gestimuleerd.

Chemische afbraak

Chemische oxidatie wordt toegepast in de verzadigde zone, dus onder de grondwaterspiegel. Door het inbrengen van een krachtig oxidatiemiddel wordt de chemische verontreiniging omgezet in water, koolstofdioxide, chloride en sulfaat.

In elke bodem worden metalen vastgelegd. Soms is extra hulp nodig. Om de verontreiniging op te ruimen kan een organisch substraat ingebracht worden in de bodem.

Fysische in situ technieken

Door het spoelen met grondwater kunnen wateroplosbare vervuilende stoffen oplossen in het grondwater en worden afgevoerd.

Bodemluchtextractie: dit is een techniek waarmee door het aanbrengen van onderdruk in de bodem vervanging van lucht in de bodem wordt gerealiseerd. Dit heeft tot gevolg dat vluchtige stoffen als chloorthenen en aromaten verdwijnen en er meer zuurstof in de bodem komt wat de aerobe afbraak stimuleert. De kosten bedragen gemiddeld 10 tot 15 euro per m³ grond.

Persluchtinjectie: deze techniek wordt in hoofdzaak gebruikt bij biologisch afbreekbaren vervuilingen. Bij deze techniek wordt onder hoge druk perslucht geinjecteerd in de grond. Door de luchtinjectie gaan de vervuilende stoffen van de waterfase naar de luchtvluchtige en vervluchtigen.

WP3.A3 Kosten voor grondwatersaneringstechnieken

Tabellen zijn afkomstig van Bodemrichtlijn.nl (2015).
In onderstaande tabellen worden de termen bemaling, sanering en beheersing gebruikt.
Grondwatersanering bij bemaling kenmerkt zich door de grote hoeveelheden grondwater die worden opgepompt en gezuiverd moeten worden. De gemiddelde tijdsduur van grondwatersanering bij bemaling bedraagt ca 6 weken.

Grondwatersanering bij bodemsanering heeft in regel als doel het reinigen van de bodem met het bijbehorende grondwater. De gemiddelde tijdsduur hiervan is 1,5 jaar. De hoeveelheden grondwater die tegelijk gereinigd moeten worden is lager dan bij bemaling.

Beheersing is het onder controle houden van een vervuilende bron (Bodemrichtlijn.nl, 2015c).

Tabel 1: Kostenindicatie van zuivering via actieve koolfiltratie, uitgedrukt in euro/m³ gezuiverd water (Bodemrichtlijn.nl, 2015c).

<table>
<thead>
<tr>
<th>Range verontreiniging</th>
<th>Vluchtige minerale olie</th>
<th>Aromaten</th>
<th>Chloorkoolwaterstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zandfilter</td>
<td>500 - 10.000 µg/l</td>
<td>1.000 - 50.000 µg/l</td>
<td>100 - 10.000 µg/l</td>
</tr>
<tr>
<td>Bemaling</td>
<td>0,24 - 0,36</td>
<td>0,72 - 0,84</td>
<td>0,72 - 1,08</td>
</tr>
<tr>
<td>Sanering</td>
<td>0,36 - 0,45</td>
<td>0,36 - 0,48</td>
<td>0,36 - 0,66</td>
</tr>
<tr>
<td>Beheersing</td>
<td>0,90 - 1,20</td>
<td>1,50 - 2,70</td>
<td>1,50 - 3,60</td>
</tr>
</tbody>
</table>

Bij actieve koolfiltratie adsorbeert een opgeloste stof (verontreiniging) aan het oppervlak van de actieve kool. Dit proces is gevoelig voor dichtslibbing met zwevende deeltjes. Om deze reden wordt vaak voorbehandeld met een zandfilter die de zwevende deeltjes eruit filtert.

Tabel 2: Zuiveringskosten van behandeling via stripen met afgasbehandeling, aromaten, vluchtige minerale olie en gechloreerde koolwaterstoffen (prijspeil 2006) (Bodemrichtlijn.nl, 2015c).

<table>
<thead>
<tr>
<th>Range verontreiniging</th>
<th>Vluchtige minerale olie</th>
<th>Aromaten</th>
<th>Chloorkoolwaterstoffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kosten bemaling [€/m³]</td>
<td>0,45 - 1,59</td>
<td>0,45 - 1,13</td>
<td>0,45 - 0,91</td>
</tr>
<tr>
<td>Kosten sanering</td>
<td>0,23 - 0,91</td>
<td>0,23 - 0,69</td>
<td>0,23 - 0,69</td>
</tr>
<tr>
<td>Kosten beheersing</td>
<td>1,13 - 2,27</td>
<td>1,13 - 2,27</td>
<td>1,13 - 1,82</td>
</tr>
</tbody>
</table>

Bij stripen wordt grondwater actief in contact gebracht met lucht. Hierdoor vervluchtige verontreinigingen. De “vervuilde” lucht wordt nabehandeld met een biobed filter of een actieve kool.

Tabel 3: Kosten van gravitatieve bezinking (prijspeil 2006) (Bodemrichtlijn.nl, 2015c).

<table>
<thead>
<tr>
<th>Debiet [m³/uur]</th>
<th>Vaste kosten [€/m³/uur]</th>
<th>Hulpstoffen [€/m³]</th>
<th>Arbeidsloon [€/m³]</th>
<th>Totale kosten [€/m³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 100</td>
<td>0,05 - 0,45</td>
<td>0,02 - 0,11</td>
<td>0,02 - 0,07</td>
<td>0,09 - 0,64</td>
</tr>
</tbody>
</table>

Gravitatieve bezinking vindt plaats op scheiding door verschil in soortelijke massa en dichtheid van de verschillende deeltjes. Sedimentatie wordt vaak toegepast als voor- of nabehandelingstechniek indien veel zwevende deeltjes of ijzerverbindingen in het water aanwezig zijn.
Adviesrapport

Tabel 4: Kosten van katalytische oxidatie (prijspeil 2006) (Bodemrichtlijn.nl, 2015c).

<table>
<thead>
<tr>
<th></th>
<th>[€/m³ water]</th>
<th>[€/m³ water]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemaling</td>
<td>0,91 - 1,36</td>
<td>0,91 - 2,27</td>
</tr>
<tr>
<td>Sanering</td>
<td>0,91 - 1,36</td>
<td>2,95 - 3,40</td>
</tr>
<tr>
<td>Beheersing</td>
<td>1,36 - 3,18</td>
<td>± 16</td>
</tr>
</tbody>
</table>

Bij katalytische oxidatie worden opgeloste verontreinigingen afgebroken door het toevoegen van een oxidatiemiddel.

Tabel 5: De kosten van precipitatie, coagulatie en flocculatie zijn hieronder indicatief weergegeven (prijsniveau 2006) (Bodemrichtlijn.nl, 2015c).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemaling</td>
<td>OH--precipitatie</td>
<td>± € 2,27 per m³ grondwater</td>
</tr>
<tr>
<td></td>
<td>S2--precipitatie</td>
<td>± € 2,27 per m³ grondwater</td>
</tr>
<tr>
<td>Sanering</td>
<td>OH--precipitatie</td>
<td>€ 0,45 tot € 1,36 / m³ grondwater</td>
</tr>
<tr>
<td></td>
<td>S2--precipitatie</td>
<td>€ 0,45 tot € 1,36 / m³ grondwater</td>
</tr>
<tr>
<td>Beheersing</td>
<td>OH--precipitatie</td>
<td>€ 2,72 tot € 3,18 / m³ grondwater</td>
</tr>
<tr>
<td></td>
<td>S2--precipitatie</td>
<td>€ 2,72 tot € 3,18 / m³ grondwater</td>
</tr>
</tbody>
</table>

Met precipitatie wordt een chemische stof toegevoegd aan het water waardoor verontreinigingen die in ionvorm aanwezig zijn neerslaan. Bij coagulatie worden chemische stoffen toegevoegd waardoor emulsies instabiel worden en vlokvorming optreedt. Flocculatie is een bevorderen van samenklontering van deeltjes door het toevoegen van hulpstoffen. De vlokken worden afgevangen.

Tabel 7: De kosten voor zuivering met een ionenwisselaar bedragen (prijspeil 2006) (Bodemrichtlijn.nl, 2015c).

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemaling</td>
<td>€ 1,83 tot € 3,18/ m³ grondwater</td>
<td></td>
</tr>
<tr>
<td>Sanering</td>
<td>€ 0,91 tot € 1,36 per m³ grondwater</td>
<td></td>
</tr>
<tr>
<td>Beheersing</td>
<td>€ 1,82 tot € 3,18 per m³ grondwater</td>
<td></td>
</tr>
</tbody>
</table>

Ionenwisselaars worden gebruikt voor het uitwisselen van kat- of anionen. Hierdoor wordt de vervuiling omgezet in een onschuldige verbinding.

De totale kosten voor omgekeerde osmose liggen tussen de € 0,91 en € 6,81 per m³ grondwater (Bodemrichtlijn.nl, 2015c).
Bijlage WP4.A
Deskresearchdata

In figuur wp4.a1-2 zijn de stappen weergegeven die Van der Zee voorstelt om stortplaatsen te prioriteren voor urban mining. Het effect van elke stap is weergegeven in tabel A1.2. Elke stap beperkt het aantal potentieel interessante stortplaatsen voor urban mining op basis van de gespecificeerde indicatoren. De KBA wordt beperkt tot de belangrijkste indicatoren in stap 2. Een uitgebreidere KBA zou rekening kunnen houden met meer indicatoren zoals weergegeven in tabel A1.1.

Tabel A1.1 Benefits and costs of the reclamation of a landfill

<table>
<thead>
<tr>
<th>Benefits</th>
<th>Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased disposal capacity</td>
<td>Expenses incurred in project planning</td>
</tr>
<tr>
<td>Avoided or reduced costs of:</td>
<td>Capita costs:</td>
</tr>
<tr>
<td>• Landfill closure</td>
<td>• Site preparation</td>
</tr>
<tr>
<td>• Post-closure care and monitoring</td>
<td>• Rental or purchase of reclamation equipment</td>
</tr>
<tr>
<td>• Purchase of additional capacity or sophisticated systems</td>
<td>• Rental or purchase of personnel safety equipment</td>
</tr>
<tr>
<td>• Liability for remediation of surrounding areas</td>
<td>• Construction or expansion of materials handling facilities</td>
</tr>
<tr>
<td>Revenues from:</td>
<td>• Rental or purchase of hauling equipment</td>
</tr>
<tr>
<td>• Recyclable and reusable materials</td>
<td>Operational costs:</td>
</tr>
<tr>
<td>• Combustible waste sold as fuel</td>
<td>• Labor</td>
</tr>
<tr>
<td>• Reclaimed soil used as cover materials, sold as construction fill, or sold for other uses</td>
<td>• Equipment fuel and maintenance</td>
</tr>
<tr>
<td>Land value of sites reclaimed for other uses</td>
<td>• Land filling non-reclaimed waste or noncombustible fly and bottom ash if waste material is sent off-site for final disposal</td>
</tr>
<tr>
<td></td>
<td>• Administrative and regulatory compliance expenses</td>
</tr>
<tr>
<td></td>
<td>• Worker training in safety procedures</td>
</tr>
<tr>
<td></td>
<td>• Hauling costs</td>
</tr>
</tbody>
</table>

Tabel A1.2 Method application – selection model for Essent plot

<table>
<thead>
<tr>
<th>Step</th>
<th>Type of research</th>
<th>Indicators used</th>
<th>Time spent</th>
<th>Research costs</th>
<th># landfills</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Desk research</td>
<td>• Familiarity with region • Land prices • Proceeds of recyclables • Supportive authority (province)</td>
<td>16 h</td>
<td>€600</td>
<td>147</td>
</tr>
<tr>
<td>1</td>
<td>Desk research</td>
<td>• Location of landfill: rural/urban region • Location of landfill distance towards the built-up area • Recyclables: amount of building and demolishing waste</td>
<td>3 h</td>
<td>€300</td>
<td>147 – 76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2 h</td>
<td>€200</td>
<td>76 – 41</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 h</td>
<td>€100</td>
<td>41 – 9</td>
</tr>
<tr>
<td>2</td>
<td>Desk research</td>
<td>Cost-benefit analysis based on: • Research costs • Mining costs • Costs of non-recyclable waste • Revenues recyclables • Revenues regained land</td>
<td>16 h</td>
<td>€1600</td>
<td>9 – 4</td>
</tr>
<tr>
<td>3</td>
<td>On-site</td>
<td>• On-site checks • Laboratory</td>
<td>2 days, 2 people</td>
<td>€3200</td>
<td>4 – 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beyond the scope of this pilot
WP4.A2 Voorbeeld: MCA-criteria en definiëring van de bijbehorende klassen

Hieronder zijn enkele voorbeelden gegeven van criteria en hun indeling in klassen (5 klassen). De klassen zijn zo concreet mogelijk geformuleerd. Deze hebben tevens gediend als voorbeeld voor de schrijvers van werkpakketten 1, 2, 3 om ervoor te zorgen dat criteria eenduidig zouden worden aangeleverd voor dit werkpakket.

Er is gekozen voor een onderverdeling in 4 klassen die lopen van 0 minst wenselijk → 3 meest wenselijke situatie.

Voorbeelden van enkele criteria en de gespecificeerde klassen

Albers (1987, p. 112):

Criterium: Kwaliteit van het stijlvoorbeeld

Hieronder zijn enkele voorbeelden gegeven van criteria en hun indeling in klassen (5 klassen). De klassen zijn zo concreet mogelijk geformuleerd. Deze hebben tevens gediend als voorbeeld voor de schrijvers van werkpakketten 1, 2, 3 om ervoor te zorgen dat criteria eenduidig zouden worden aangeleverd voor dit werkpakket.

Er is gekozen voor een onderverdeling in 4 klassen die lopen van 0 minst wenselijk → 3 meest wenselijke situatie.

Voorbeelden van enkele criteria en de gespecificeerde klassen

Albers (1987, p. 112):

Criterium: Kwaliteit van het stijlvoorbeeld

Hieronder zijn enkele voorbeelden gegeven van criteria en hun indeling in klassen (5 klassen). De klassen zijn zo concreet mogelijk geformuleerd. Deze hebben tevens gediend als voorbeeld voor de schrijvers van werkpakketten 1, 2, 3 om ervoor te zorgen dat criteria eenduidig zouden worden aangeleverd voor dit werkpakket.

Er is gekozen voor een onderverdeling in 4 klassen die lopen van 0 minst wenselijk → 3 meest wenselijke situatie.

Voorbeelden van enkele criteria en de gespecificeerde klassen

Albers (1987, p. 112):

Criterium: Zeldzaamheid incl. toelichting/overwegingen

Overige toelichting bij het criterium Zeldzaamheid en de totstandkoming van de klassen:
WP4.A3 Het scoren van de opties na invoer van de klassen per optie.

Na het classificeren of invoeren van de meetgegevens per stortplaats moeten de gegevens nog gescoord worden. Dat wordt gedaan door relative scaling de laagste score op 0 te stellen (minst wenselijk) en de hoogste op 100% (meest wenselijk) de rest wordt relatief in die schaal ingedeeld. Zoals in het voorbeeld hieronder waar men van performance matrix (tabel a3-21) naar een gescoorde matrix (tabel a3-22) toewerkt:

7.3. Zeldzaamheid

Dit criterium kan op zeer veel aspecten betrekking hebben. Onder de selectiecriteria voor de architectuur van Amsterdam (zie par. 4.5) worden een aantal verschillende zeldzaamheidswaarden genoemd, te weten:
- zeldzaamheidswaarde qua type,
- zeldzaamheidswaarde qua stijl,
- zeldzaamheidswaarde qua materiaalgebruik
- zeldzaamheidswaarde binnen het oeuvre van een architect
- zeldzaamheidswaarde qua bestemming,
- zeldzaamheidswaarde qua gaaheid,
- zeldzaamheidswaarde qua ouderdom per individueel object,
- zeldzaamheidswaarde qua ensemble/complex.
- zeldzaamheidswaarde qua aanleg,
- zeldzaamheidswaarde qua structuur,
- zeldzaamheidswaarde qua relatie met de omgeving.

Wegens het grote aantal mogelijke zeldzaamheidswaarden is het noodzakelijk om bij gebruik van het criterium zeldzaamheid dit eenduidig te definiëren. Men is namelijk geneigd op grond van het woord zeldzaamheid een aspect van een landgoed deze qualificatie toe te kennen. Men zou geneigd zijn ieder park van 200 jaar oud, zeldzaam te achten. Maar relatief zijn er in Kenne-merland vrij veel (restanten van) parken in vroege-landschappelijke stijl, een vijfentwintig-tal. Daarvan verkeren er echter weinig in redelijke staat. Bij het vaststellen van het criterium zeldzaamheid moeten twee dingen gedefinieerd worden:
1. de eigenschap die men in beschouwing neemt;
2. de groep, de verzameling dingen, waaraan de eigenschap wordt toegedacht.

Dikwijls zal zeldzaamheid gezien worden binnen het kader van het betreffende onderzoek. Dat geldt voor het architectuuronderzoek van Baarn. Eijkenstein betrok in dit onderzoek zeldzaamheid op de architectuurstijl en op het bouwtype.

In het Kennemerland rapport en in het onderhavige onderzoek zijn twee aspecten van zeldzaamheid aangehouden:
- enig in zijn soort in de tijd van ontstaan in Zuid-Kennemerland;
- neest volledige of enig overgebleven voorbeeld van werk in een bepaalde stijl of van een bepaalde architect binnen Zuid-Kennemerland.

Op grond hiervan werd de volgende klasse indeling gemaakt.
Tabel A3-21: Performance matrix. Vergelijking van broodroosters ter verduidelijking (Department for Communities and Local Government, 2009).

<table>
<thead>
<tr>
<th>Options</th>
<th>Price</th>
<th>Reheat setting</th>
<th>Warming rack</th>
<th>Adjustable slot width</th>
<th>Evenness of toasting</th>
<th>Number of drawbacks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boots 2-slice</td>
<td>£18</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>Kenwood TT350</td>
<td>£27</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>Marks & Spencer 2235</td>
<td>£25</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>3</td>
</tr>
<tr>
<td>Morphy Richards Coolstyle</td>
<td>£22</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Philips HD4807</td>
<td>£22</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Kenwood TT825</td>
<td>£30</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>2</td>
</tr>
<tr>
<td>Tefal Thick ‘n’ Thin B780</td>
<td>£20</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>5</td>
</tr>
</tbody>
</table>

A tick indicates the presence of a feature. Evenness of toasting is shown in Which? on a five-point scale, with a solid star representing the best toaster, and an open star the next best. The family eliminated from consideration all the toasters that scored less than best or next best.

Tabel A3-22: Scoring the options (Department for Communities and Local Government, 2009)

<table>
<thead>
<tr>
<th>Options</th>
<th>Price</th>
<th>Reheat setting</th>
<th>Warming rack</th>
<th>Adjustable slot width</th>
<th>Evenness of toasting</th>
<th>Drawbacks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boots 2-slice</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>35</td>
</tr>
<tr>
<td>Kenwood TT350</td>
<td>25</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>80</td>
<td>61</td>
</tr>
<tr>
<td>Marks & Spencer 2235</td>
<td>42</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>53</td>
</tr>
<tr>
<td>Morphy Richards Coolstyle</td>
<td>67</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>Philips HD4807</td>
<td>67</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>90</td>
<td>49</td>
</tr>
<tr>
<td>Kenwood TT825</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>90</td>
<td>9</td>
</tr>
<tr>
<td>Tefal Thick ‘n’ Thin B780</td>
<td>84</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>70</td>
</tr>
</tbody>
</table>
WP4.A4 Gevolgde procedure om tot een MCA-model te komen

Om de MCA-analyse uit te voeren op een geaccepteerde manier is de procedure gevolgd in de handleiding van het Department for Communities and Local Government (2009, p. 31). Deze bron werd ons aangeraden door de geraadpleegde MCA-expert, prof. dr. Carolien Kroeze. De volgende acht stappen zijn ondernomen en worden hier toegelicht.

1. Besliscontext bepalen.
 Uiteindelijk moet een keuze gemaakt worden of urban mining wordt toegepast (voor een casestudy). Als urban mining wordt toegepast dan willen wij ook weten voor welke stortplaats de kans op een succes het grootst zal zijn. Van succes kan worden gesproken als (a) de stortplaats is opgeruimd, (b) natuur is ontwikkeld in de zilvergroene natuur van het NNN/de EHS met de opbrengsten van urban mining (c) zonder het milieu te verslechteren.

2. Opties identificeren.
 Hoewel er bijna negenhonderd stortplaatsen in Limburg liggen, zijn maar enkele interessant voor dit onderzoek. De opdrachtgever is namelijk alleen geïnteresseerd in stortplaatsen in de zilvergroene natuur van het NNN/de EHS. Dat zijn er in totaal 34. Daarvan worden er door de provincie Limburg 16 geclassificeerd als code 6. Daarmee wordt aangetoond dat de stortplaats al gesaneerd is of dat er op deze stortplaats geen stortmateriaal is aangetroffen (Provinciale Staten van Limburg, persoonlijke communicatie, 15 februari 2015). Wanneer van een stortplaats geen rapport beschikbaar is, kunnen wij hiervoor geen performance van die optie inschatten en moeten wij de stortplaats ook uitsluiten van het onderzoek. Dat blijkt voor twee stortplaatsen het geval, waardoor 16 stortplaatsen (opties) over blijven voor de analyse. In bijlage WP4.B2 worden – voor de volledigheid – alle 890 stortplaatsen weergegeven. De nominale meetschaal wordt toegepast om te kunnen sorteren op de relevante stortplaatsen voor dit onderzoek, zonder dat informatie verloren gaat over de andere stortplaatsen.

<table>
<thead>
<tr>
<th>Criterium</th>
<th>Meetschaal</th>
<th>Eenheid</th>
<th>Opmerking</th>
<th>Aantal stortplaatsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ligt in Zilvergroene natuur van het NNN/de EHS</td>
<td>Nominaal</td>
<td>1 of 0</td>
<td>Geen eenheid</td>
<td>890 stortplaatsen</td>
</tr>
<tr>
<td>Heeft geen code 6 in de lijst van stortplaatsen van de provincie en grote gemeenten. Code 6 betekend: is gesaneerd of er is bij onderzoek geen stortmateriaal aangetroffen.</td>
<td>Nominaal</td>
<td>1 of 0</td>
<td>Geen eenheid</td>
<td>34 stortplaatsen</td>
</tr>
<tr>
<td>Informatie over stortplaats beschikbaar</td>
<td>Nominaal</td>
<td>1 of 0</td>
<td>Geen eenheid</td>
<td>16 stortplaatsen</td>
</tr>
</tbody>
</table>

3. Identificeren van de doelen en criteria die de waarde reflecteren van de consequentie voor elke optie.
 De klassen van de ordinale meetschaal zijn voor elk criterium gedefinieerd. Voor elk criterium is klasse 0 het minst wenselijk en 3 het meest wenselijk.
In bijlage WP4.A2 zijn enkele voorbeelden gegeven van criteria en definities van klassen, zoals die door Albers (1987) zijn beschreven. Deze hebben gediend als blauwdruk voor het onderzoek om de klassen voor elk criterium te kunnen definiëren.

4. Beschrijf de verwachte performance van elke optie tegen de criteria incl. scores van de opties.
 De klassen die bij stap drie gedefinieerd zijn worden in deze stap gebruikt om voor elke stortplaats de klasse te bepalen. Tevens wordt de score per optie onder een criterium bepaald nadat alle opties zijn getypeerd met een klasse per criterium (zie ook bijlage WP4.A3 en het voorbeeld in tabel 1 §2.3). Dat gebeurt volgens formule 1.1, deze methode wordt relative scaling genoemd.

5. Weging
 Aan elk criterium wordt ook een wegingsfactor verbonden, afhankelijk van hoe zwaar een criterium in de hiërarchie dient mee te tellen en hoe zwaar elk hoofdcriterium dient mee te tellen in de gewogen sommering. De geraadpleegde bronnen (Albers, 1987; Center for International Forestry Research, 1999; Department for Communities and Local Government, 2009) en de expert benadrukken dat dit een subjectieve aangelegenheid is.

6. Combineren van gewichten en scores voor elke optie om tot een totaalscore te komen.
 Dit is gedaan door de rekenmethode toe te passen uit §2.3. Het resultaat is te zien in bijlage WP4.B2 in de vorm van het gebruikte Excel werkblad.

7. De resultaten examineren
 De examinering van de geprioriteerde lijst van stortplaatsen wordt beschreven in §3.5.3.
WP4.A5 Criteria/parameters en vergelijkbare eenheden

Zoals beschreven in stap 3 van de MCA-procedure uit de vorige paragraaf dient elk criterium een bepaald doel. Hier is gekozen voor een hiërarchische indeling van de doelen. Daaronder worden de deeldoele en criteria verdeeld. De hiërarchie wordt weergegeven in figuur a5-3. In de criteriatabel van bijlage WP4.B1 staan de criteria en doelen in meer detail. Criteriumcategorieën voor dit onderzoek zijn gebaseerd op de doelen van de opdrachtgever.

Figuur A5-3: The value tree

Om bruikbaar te zijn moeten criteria voldoen aan de volgende eisen:

a. Criteria moeten onafhankelijk van elkaar zijn.
b. De klassen - van een ordinale meetschaal - moeten elkaar uitsluiten en alles omvatten. Bijv. <1 (0), tussen 1 tot 2 (1) en >2 (2)
c. Daarnaast moet elk criterium meetbaar zijn voor alle stortplaatsen. Dat is de reden dat de twee stortplaatsen, waarvan geen rapport beschikbaar is, niet worden meegenomen in de analyse (tabel 4).

Tevens moeten criteria meetbaar zijn op een van de gebruikte schalen:

1. Nominaal: waar of niet waar.
3. Continue meetschaal, zoals de prijs van aluminium per ton.

Op 15 april is er op basis van de wens van de opdrachtgever besloten om een MCA-light uit te voeren (§2.2). Er is besloten om de circa 48 criteria, die wij op dat moment hadden, in te delen. Er is besloten om criteria niet op te nemen indien ze goed passen in een exploitatiebegroting. Dan blijven er nog 26 potentiële criteria over voor het prioriteringsmodel. Op dat moment hebben wij criteria geselecteerd op basis van drie eisen: (a) criteria zijn onafhankelijk van elkaar, (b) klassen zijn te definiëren en (c) stortplaatsen zijn te classificeren. Of b en c mogelijk zijn is vooral afhankelijk van de informatie in de rapporten over de betreffende stortplaatsen. Daarom valt een criterium als "gevoeligheid omringende habitat voor vermesting" af en blijkt het criterium "oppervlakte van de stortplaats" goed hanteerbaar.

Na deze oefening blijven de volgende 10 criteria over:

1. Huidig gebruik omliggende terreinen
2. Huidig gebruik stortterrein
3. Grondwatertoestand
4. Contactrisico met afval
5. Milieueffecten transport voor verder verwerking
6. Afstand tot verwerkingsinstallatie
7. Mate van gezondheidsrisico
8. Samenstelling stortplaats
9. Oppervlakte van de stortplaats
10. Inhoud van de stortplaats

In de criteriatabel in bijlage WP4.B1 zijn deze criteria onder de criteriumcategorieën geplaatst respectievelijk: natuur, milieu en financieel. De tabel bevat tevens de gehanteerde definities van klassen.
Tien criteria is een vrij normaal aantal vergeleken met het *gemiddeld aantal* criteria voor een MCA zoals genoemd in de MCA Manual van het Department for Communities and Local Government (2009). Tevens is het gerechtvaardigd om alleen criteria te gebruiken die voor alle stortplaatsen gemeten kunnen worden. Volgens Albers (1987) is dit zelfs een noodzakelijke voorwaarde.
WP4.B1 Criteriatabellen

Tabel B1-24: De criteriatabellen inclusief definities van klassen.

<table>
<thead>
<tr>
<th>Criterium</th>
<th>Doel</th>
<th>Meet- en klassen</th>
<th>Definities van klassen & opmerkingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natuur</td>
<td>Natuur ontwikkelen in zilvergroene zone.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>3, Braakliggend 2, Weiland, akkerland 1, Bos, Natuur 0, Tuinen, kerkhof, woningen Belangrijk voor draagvlak</td>
</tr>
<tr>
<td>1. Huidig gebruik omliggende terreinen (WP1)</td>
<td>Natuurontwikkeling mag niet gepaard gaan met destructie van naastliggende natuur.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>3, Braakliggend 2, Weiland, akkerland 1, Bos, Natuur 0, Tuinen, kerkhof, woningen Belangrijk voor draagvlak</td>
</tr>
<tr>
<td>2. Huidig gebruik stortterrein (WP1)</td>
<td>We willen de natuurkwaliteit verbeteren.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>3, Braakliggend 2, Weiland, akkerland 1, Bos, Natuur 0, onbekend en anders Belangrijk voor draagvlak</td>
</tr>
<tr>
<td>Milieu en maatschappelijk</td>
<td>Stortplaats opruimen en milieu niet verslechteren.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>3, Hoog risico 2, Verhoogd risico 1, Gering risico 0, Geen risico</td>
</tr>
<tr>
<td>3. Grondwatertoestand (WP1)</td>
<td>Vervuiling van grondwater verminderen.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>3, Hoog risico 2, Verhoogd risico 1, Gering risico 0, Geen risico</td>
</tr>
<tr>
<td>4. Contactrisico met afval (afval is zichtbaar, plaatselijke openingen) (WP1)</td>
<td>Contactrisico met afval verminderen.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>3, Hoog risico 2, Verhoogd risico 1, Gering risico 0, Geen risico</td>
</tr>
<tr>
<td>5. Milieueffecten transport voor verder verwerking (WP2)</td>
<td>Verwerken van stortafval moet het milieu zo min mogelijk belasten.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>Afstand tot dichtstbijzijnde thermische verwerker In Nederland: ARN Weurt/Nijmegen 3, Minder dan 100 km 2, 100 tot 125 km 1, 125 tot 150 km 0, Meer dan 150 km</td>
</tr>
<tr>
<td>6. Afstand tot verwerkingsinstallatie voor levering van warmte en groene stroom in Limburg (WP2)</td>
<td>Groene stroom en warmte uit oud afval.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>Aan de hand van kamerbrief Warmtevisie: Roermond of Chemelot 3, Minder dan 12,5 km 2, 12,5 tot 25 km 1, 25 tot 37,5 km 0, Meer dan 37,5 km</td>
</tr>
<tr>
<td>7. Mate van gezondheids risico (WP1)</td>
<td>Het opruimen van de stortplaats moet geen gevaar opleveren voor de volksgezondheid.</td>
<td>Ordinaal 0, 1, 2, 3</td>
<td>Totale mate van risico in rapporten 0/3 per factor (6) = 0 tot 18. 3, Hoog 5 tot 18 2, Verhoogd risico 3 tot 5 1, Gering risico 0,4 tot 3 0, Geen risico minder dan 0,4 Belangrijk voor draagvlak</td>
</tr>
<tr>
<td>Stortgas 0-3 Afdeklaag 0-3 Oppervlaktewater 0-3 Grondwater fretisch 0-3</td>
<td>1e watervoerend pakket 0-3 2e watervoerend pakket 0-3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Urban mining Limburg - Groen voor Afval

p. 67 van 75
Financieel

8. Samenstelling stortplaats (WP1 en WP2)

Zoveel mogelijk opbrengst generen door recycling en hergebruik van oud afval.

Ordinaal	- Wat zit erin %
0, 1, 2, 3	Wat is het meest gunstig
	Berekening score op basis van
	opmerking na deze tabel.
	3 = 3,5 – 4,0
	2 = 3,0 – 3,5
	1 = 2,0 – 2,9
	0 = 1,0 – 1,9

9. Oppervlakte van de stortplaats (WP4)

Investeringskosten zo laag mogelijk houden.

<table>
<thead>
<tr>
<th>Ordinaal</th>
<th>0, 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,</td>
<td>Tien hectare en groter evt. door clustering van stortplaatsen die niet meer dan 5 km? van elkaar liggen.</td>
</tr>
<tr>
<td>2,</td>
<td>1 hectare tot 10 hectare</td>
</tr>
<tr>
<td>1,</td>
<td>Een tiende tot 1 hectare</td>
</tr>
<tr>
<td>0,</td>
<td>Kleiner dan 0,1 hectare</td>
</tr>
</tbody>
</table>

10. Inhoud van de stortplaats (WP1)

Investeringskosten zo laag mogelijk houden.

<table>
<thead>
<tr>
<th>Ordinaal</th>
<th>0, 1, 2, 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,</td>
<td>1 miljoen m3 en groter evt. door clustering van stortplaatsen.</td>
</tr>
<tr>
<td>2,</td>
<td>100.000 tot 1 miljoen m3</td>
</tr>
<tr>
<td>1,</td>
<td>10.000 tot 100.000 m3</td>
</tr>
<tr>
<td>0,</td>
<td>Kleiner dan 10.000 m3</td>
</tr>
</tbody>
</table>

Toelichting bij criterium 8

Inhoudspercentage × wenselijkheidsscore afvalsoort = deelscore afvalsoort

<table>
<thead>
<tr>
<th>Wenselijkheidsscores</th>
<th>Huishoudelijk</th>
<th>BSA</th>
<th>Chemisch</th>
<th>Onbekend en overig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meest gewenst</td>
<td>score 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gewenst</td>
<td>score 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ongewenst</td>
<td>score 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meest ongewenst</td>
<td>score 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bijvoorbeeld een stortplaats met:

- Huishoudelijk 50% = 50% × 4 = 2
- BSA 10% = 10% × 3 = 0,3
- Onbekend 40% = 40% × 1 = 0,4
- Totaalscore = 2,7 = klasse 1
Adviesrapport

Milieuadvies

WP4.B2 Lijst van stortplaatsen en MCA-rekenmodel (Excel)

Deze bijlage bestaat uit twee delen:
- **Deel 1**: Het MCA-rekenmodel met lijst van stortplaatsen (Excel)
 Deze bijlage wordt als los Excel document meegestuurd. Links de complete lijst van stortplaatsen. En rechts (boven) het MCA-rekenmodel. De 10 criteria van de MCA-light zijn gerangschikt en gescoord. Vervolgens is op basis van de weegsets de gewogen sommering berekend. De Excel is onbeveiligd waardoor alle gebruikte formules en andere input kunnen worden bekeken (en desgewenst) aangepast. In de weegset zijn de belangrijkste argumenten voor wegingen toegevoegd in de vorm van *opmerkingen*.
- **Deel 2**: Excel add-in als aanvulling op ons MCA-rekenmodel
 Hierna beschreven.

Excel add-in als aanvulling

Dit onderzoek leverde ook nog een alternatief op voor ons MCA-model de Excel add-in van Jablonský, maakt het mogelijk om ook nog andere MCA technieken los te laten op onze meetgegevens in het MCA-model. Wij deden dit zelf niet doordat de opdrachtgever andere prioriteiten stelde, zoals de haalbaarheidsanalyse.

Maakt prioritering mogelijk

Discussie

Toepassing van een MCA-programma of spreadsheet werkblad is naar verwachting alleen verantwoord als daarover is gepubliceerd in peer-reviewed journals, omdat het dan een wetenschappelijk geaccepteerde methode is. Op basis daarvan is gezocht naar MCA Excel add-ins/werkbladen in wetenschappelijke publicaties. Het onderzochte werkveld is daarmee nog verder verbreed doordat wij zoekresultaten vonden in het wetenschappelijke werkveld van de econometrie bestudering (Jablonský, 2009, 2014a, 2014b, n.d.).

Door (Jablonský, 2009, 2014a) wordt een spreadsheet add-in beschreven – genaamd Sanna – en gepubliceerd (Jablonský, n.d.) om gratis te gebruiken. Met deze add-in is het mogelijk om een tabel te maken met maximaal 100 opties/alternatieven en 50 criteria. Na het vullen van de tabel met meetgegevens kan op basis van verschillende MCA-methoden een uitkomst worden berekend. Wij zien dit als een geschikt programma om vrij vlot aangepaste versies te maken van ons eigen MCA-model met een andere MCA-techniek. Bijvoorbeeld nu ons model is gemaakt in Excel op basis van de gewogen sommering en met ordinaele meetgegevens. Dan is het mogelijk om met behulp van Sanna daar ook een concordantieanalyse (Electre genaamd in deze add-in) op los te laten, zonder dat dit veel tijd kost. Een nadeel van de add-in is dat de spreadsheet gedeeltelijk beveiligd is waardoor de formules in cellen niet zichtbaar zijn voor controle. Het is ook niet mogelijk om met een wegingshiërarchie te werken in deze add-in.
De gewogen sommering kan ook hiermee toegepast worden en wel (gewogen/ongewogen) op maximaal 100 stortplaatsen met maximaal 50 criteria. Het biedt zeker mogelijkheden als meer/actuele meetgegevens over al die stortplaatsen bekend worden.

Bronvermelding bij bijlage WP4.B2 (deel 2)

Het exploitatiebegrotingsmodel in Excel (**los Excel document**)

- Deel 1: Het exploitatiebegrotingsmodel in Excel
- Deel 2: Aandachtspunten financiering (hieronder)

In dit deel van deze bijlage geven wij kort weer welke stappen ondernomen moeten worden om te komen tot een financiering door een externe kredietgever (bank) of sponsor. In het exploitatiebegrotingsmodel is hiermee rekening gehouden door uit te gaan van **huur of operational lease** voor alle duurzame productiemiddelen. Een aantrekkelijke constructie voor kredietverstrekkers en noodzakelijk om een rekenmodel te maken op grond van basisgegevens.

STAP 1: Voorbereidende fase

Alvorens naar een externe financier te gaan is het van groot belang om:

- een businesscase te hebben,
- een stakeholdersanalyse te hebben uitgevoerd,
- een risico-analyse te hebben uitgevoerd, waarin naast financiële componenten ook maatschappelijke (people, planet) componenten zijn meegewogen.

Zorg dat bovengenoemde documenten opgesteld of gecontroleerd zijn door een accountant van een gerenommeerd accountantskantoor.

Tip: Het heeft voordelen om het *urban mining*project onder te brengen in een nieuwe juridische entiteit. Voor externe financiers (fondsen/ bankiers) is het hierdoor duidelijk welke activiteit zij financieren en het geeft transparatie in de cijfers. Laat hierin de accountant meedenken (Rvo.nl, 2015) (**zie ook stap 3**).

STAP 2: Werven risicodragend kapitaal

Omdat banken vaak solvabiliteitseisen stellen is het aan te raden om de potentie van investeerders. Voor een succesvolle fondsenwerving is een fondsenwervingsplan noodzakelijk. In een volledig fondsenwervingsplan worden (a) de relatiedoelgroepen benoemd, (b) de fondsenwervingselementen gerealiseerd, (c) de wijze waarop deze doelstellingen gerealiseerd worden en (d) de planning hierbij. Belangrijke fondsen zijn (**Transmissie.nl, 2015**):

1. mogelijke subsidies van de overheid,
2. bijdrage van particuliere vermogensfondsen,
3. giften van donateurs,
4. eenmalige grote giften,
5. bijdragen van bedrijven.

Maak een longlist van mogelijk te benaderen fondsen en sponsors na het opstellen van het fondsenwervingsplan. Hierbij moet gekeken worden naar de maatschappelijke betrokkenheids- en financieringsdoelstellingen van het bedrijf of fonds. Het heeft immers weinig zin om aanvragen in te dienen, indien het bedrijf of de instelling geen affiniteit heeft met dergelijke projecten (Rvo.nl, 2015). In werkpakket 1 §3.4 staan enkele belangrijke mogelijkheden genoemd voor het werven van risicodragend vermogen.

STAP 3: Werven risicomijdend kapitaal

Voor het bancair financieren van het project zelf is een bedrijfsfinanciering of een projectfinanciering mogelijk. Bij een bedrijfsfinanciering wordt een financiering verstrekt aan het bedrijf dat de desbetreffende activiteit of het project uitvoert. De entiteit is met al zijn activiteiten en activa aansprakelijk voor de financiering. Bij een projectfinanciering wordt de financiering verstrekt op basis van het project zelf. Het project wordt dan vaak in een aparte juridische entiteit geplaatst. De financiers lopen alleen risico over het project en kunnen alleen activa/ winst claimen van het project zelf en niet van de eigenaren (Rvo.nl, 2015). Daarnaast behoort het verstrekken van objectfinancieringen ook tot de mogelijkheden.

Tip: Dit zijn eisen met betrekking tot de verhouding tussen het eigen vermogen en vreemd vermogen.

17 Onder entiteit wordt verstaan een rechtsvorm als BV, NV, Stichting en dergelijke.
18 Dit zijn eisen met betrekking tot de verhouding tussen het eigen vermogen en vreemd vermogen.
1. Een toereikende cashflow om alle verplichtingen inclusief aflossingen te kunnen betalen. De operationele cashflow moet vaak zo’n 10-50% boven de financieringsverplichtingen liggen.
2. Een bij het project passende solvabiliteit (20 – 50%) uitgaande van het risico van het project. Hoe hoger het risico, hoe hoger de eigen inbreng van het vermogen moet zijn. Banken stellen solvabiliteitseisen, het is daarom aan te raden zo snel mogelijk te starten met het benaderen van potentiële investeerders. Het mogelijke financieringstekort kan dan uit de bancaire sector gehaald worden.
3. Het risicoprofiel moet bij de kredietverstrekker passen.
4. De terugbetaling van de uitstaande financiering moet zo goed als zeker zijn.

In de praktijk kan dit betekenen dat sommige innovatieve projecten moeilijk financierbaar zijn omdat de risico’s van te voren moeilijk in te schatten zijn. Daarnaast kan het zijn dat dergelijke projecten niet onder de scope vallen van de financiële instelling. Een mogelijke oplossing is door de eigenaar van een dergelijke stortplaats, bijvoorbeeld een gemeente of provincie, een garantie af te laten geven voor een deel van de financiering (Rvo.nl, 2015).

Bronvermelding bij WP4.B3
WP4.B4 Effect-, mitigatie- en compensatieanalyse

De voor urban mining beoogde stortplaatsen liggen geheel in het NNN/de EHS. Verschillende stortplaatsen zijn wellicht al volledig opgegaan in het NNN/de EHS. Het ontginnen van een oude stortplaats geef naar verwachting een extra belasting van natuur en milieu. Het scheiden en bewerken van afvalstromen kan leiden tot geur-, geluid- en stofoverlast. De afvoer van het afval en de aanvoer van aanvulgrond leidt tot veel transport en daarmee tot meer energieverbruik en een slechtere luchtkwaliteit. Bij de keuze van een stortplaats voor urban mining zal er dan ook steeds een locatiespecifieke, brede milieuanalyse nodig zijn (Provincie Gelderland, 2011).

Regelgeving

Flora en Faunawet

In de Flora- en Faunawet is de bescherming van soorten geregeld. Wanneer plannen bestaan voor projecten die negatieve gevolgen kunnen hebben voor onder de Flora- en Faunawet beschermde soorten, dienen deze effecten in een aparte toetsing te worden beschrenken en dient mogelijk ontheffing te worden aangevraagd. Om te bepalen of er een ontheffing nodig is moet er een onderzoek worden uitgevoerd naar de mogelijke vrijstellingen en gedragscodes. Er zijn hiervoor vier stappen:

Stap 1: Ga na of er beschermde soorten aanwezig zijn. Een ecologisch deskundige kan het best vaststellen of er beschermde planten of dieren aanwezig zijn. Als er geen beschermde soorten zijn dan is er geen ontheffing voor de Flora- en Faunawet nodig.

Stap 2: Treden er schadelijke effecten op bij de aanwezige beschermde soorten? Bijvoorbeeld: Bomen kappen bij broedende vogels, het slopen van bouwwerken waar mogelijk vleermuizen leven. Als de werkzaamheden niet schadelijk zijn is er geen ontheffing nodig. Uit het onderzoek kan blijken dat er schadelijke effecten zijn, er is dan een vervolgonderzoek noodzakelijk. Uit het vervolgonderzoek zal naar voren komen welke soorten er van het plangebied gebruik maken, welke functie het plangebied heeft (verbindingsszone, nestplaats, voortplanting- of type vaste rust- of verblijfplaats). Het vervolgonderzoek is seizoensgebonden. Een tijdige start van de toetsing aan de Flora- en Faunawet is dus belangrijk.

Stap 4: Maak gebruik van een gedragscode. Naast de algemeen vrijgestelde soorten zijn er ook andere soorten waarvoor een vrijstelling mogelijk is bij toepassing van een goedgekeurde gedragscode.

Met behulp van dit onderzoek wordt nagegaan welke regels en voorschriften kunnen worden overgenomen in de werkprotocollen. Vaak moet later een monitorsonderzoek worden uitgevoerd. Bij het uitvoeren van sommige maatregelen is de aanwezigheid van een deskundige noodzakelijk. Soms is het niet mogelijk voor alle beschermde soorten een vrijstelling te krijgen. In dat geval moet voor de resterende soorten een ontheffing worden aangevraagd (RVO, 2015).

De Natuurbeschermingswet 1998

De NB-wet regelt de bescherming van natuurgebieden die zijn aangewezen als Natura 2000-gebied of beschermd natuurmonument. De hoofdregel is een verbod op activiteiten die de kwaliteit van de natuurlijke leefgebieden van planten- en diersoorten in een Natura 2000-gebied of beschermd natuurmonument kunnen verslechteren. Hetzelfde geldt als deze een significant verstorend effect kunnen hebben op de soorten waarvoor het gebied als Natura 2000-gebied of beschermd natuurmonument is aangewezen. Gevolgen zijn ‘significant’ wanneer de instandhoudingsdoelstellingen van een Natura 2000-gebied op lange termijn niet gerealiseerd kunnen worden. De stortplaatsen in de zilvergroene natuur liggen meestal in de nabijheid van een Natura 2000-gebied. Omdat door externe werking de activiteit mogelijk negatieve gevolgen heeft voor de instandhoudingsdoelstellingen van het Natura 2000-gebied, is het nodig een habitattoets uit te voeren. De habitattoets dient om vast te stellen of, en zo ja, onder welke voorwaarden een menselijke activiteit in en rondom een Natura 2000-gebied kan worden toegelaten. De beoogde
activiteiten worden getoetst op hun effect op de instandhoudingsdoelstellingen en of er ten gevolge daarvan geen verstoring optreedt. Om dit toetsbaar te maken kent de NB-wet voor plannen die gevolgen voor de betreffende gebieden zouden kunnen hebben een goedkeuringsvereiste (artikel 19j), en voor projecten en andere handelingen die gevolgen voor de betreffende gebieden zouden kunnen hebben een vergunningplicht (artikel 19d). De goedkeuring of de vergunning wordt alleen verleend wanneer zeker is dat de instandhoudingsdoelstellingen voor het gebied niet in gevaar worden gebracht (Van Groen, 2014). Alle mogelijke effecten zijn te beschouwen als ‘externe werking’ omdat de stortplaatsen in de zilvergroene natuur buiten het Natura 2000-gebied liggen. Aangezien urban mining daarnaast beperkt is in ruimte en tijd kan alleen sprake zijn van tijdelijke effecten tijdens de saneringsfase. Er zijn daarbij drie mogelijkheden:

1. Er is geen negatief effect. Dit betekent dat er geen NB-wet vergunning nodig is.
2. Er is wel een mogelijk negatief effect, maar zeker geen significant negatief effect. Dit betekent dat vergunningverlening aan de orde is. Met de zogenaamde verslechteringstoets wordt in kaart gebracht wat de effecten (kunnen) zijn van de activiteit op de relevante natuurwaarden in het gebied.
3. Er is kans op een significant negatief effect. Ook hier is vergunningverlening aan de orde. Hier is een passende beoordeling vereist (artikel 19f lid 1). Uit dit onderzoek, waarbij ook cumulatieve effecten moeten zijn meegenomen, kan blijken dat:
 a. er geen kans is op een negatief effect. In dat geval wordt de vergunning verleend;
 b. er kans is op een aanvaardbaar negatief effect. In dat geval wordt de vergunning verleend onder voorschriften/beperkingen.
 c. er is kans op een significant negatief effect. Hier moet worden aangetoond dat er geen alternatieven zijn, dat er een dwingende reden van groot openbaar belang is en dat voorzien is in compensatie (ADC-toets).

Er is voor urban mining en de sanering Wbb in de nabijheid van een Natura 2000 gebied naar verwachting een aparte NB-wet vergunning nodig. De vergunningaanvraag wordt door de provincie beoordeeld. Indien de bodemsanering wordt gecombineerd met activiteiten waarvoor een omgevingsvergunning nodig is (bijv. kappen van bomen, slopen, bouwen) dan wordt de NB-wet vergunning met een verklaring van geen bedenkingen hier een onderdeel van. In het geval van een omgevingsvergunning is de gemeente het bevoegde gezag (SIKB, 2015).

Bronvermelding bij bijlage WP4.B4
InCompany Milieuadvies

faculteit Natuurwetenschappen/School of Science
Open Universiteit
Postbus 2960
6401 DL Heerlen, NL
tel. +31 45 576 2877
nw.sec@ou.nl
www.ou.nl/nw
www.Incompany-milieuadvies.nl