The RAGE project
- H2020 Research and Innovation Action in advanced gaming technologies (ICT-21)
- Partners from:
 - Games Industry
 - Research
 - Education and Training
 - Business Innovation

RAGE reusable game software components
1. **Data analysis**
 - Data tracking
 - Learning analytics
 - Sensors
 - Emotion detection
 - Competences
 - Assessment
 - Evaluation
2. **Game intelligence**
 - Social agents
 - Natural language
 - Dialogue management
 - Game balancing
 - Storytelling
 - Procedural animation
 - Gamification

Starting points
- Applied games (serious games) are useful
 - Societal problems, health, education, training
 - Driving creativity and innovation
 - Creating jobs
- Applied games are typically "low budget, low tech" ("poor cousins" of the leisure game industry)
- Applied game industry is highly fragmented
 - >3000 small companies across Europe
 - No key players
 - Limited knowledge sharing
 - Plenty of re-inventing the wheel

What new technologies?

Coping with technological diversity

Portability/Interoperability
RAGE Client-asset architecture

- Avoid dependencies of external software frameworks/libraries.
- Based on established software patterns and abstraction.
- Avoids any interference with the user interface.
- Principal client-side code bases: C# and TypeScript.

Examples

- Emotion recognition
- Natural language processing
- Performance statistics
- …

Example 1: Real-time emotion recognition

1. Face detection
2. Facial landmarks (37-64 points)
3. Emotion extraction
 - Training data set
 - Fuzzy logic rules
 - Accuracy ~80%

Example 2: Natural language processing

Multiple choice:
1. I cannot speak English
2. I can speak English
3. I can speak Dutch

Communication training

Job seekers interview training
Example 2: Natural language processing

- RAGE readerbench services (RESTful)
 - Textual cohesion
 - Textual complexity
 - Semantic annotation
 - Sentiment analysis / opinion mining
 - Essay grading
 - Conversation summar

Readerbench.com (English, French)

Example 3: Natural language processing

Readerbench output

Example 3: performance statistics

- Exploring the players data trails:
 - Which data to select?
 - Which statistical procedures to use?
 - How to apply and interpret the statistics?

- Population statistics
- Normality check
- F-test/T-test comparisons

Goal:
- Provide teachers with reliable statistics on student performance in serious games and protect teachers against making interpretive mistakes.

Approach:
- Send student scores from a client side game to a server-side analytics system.
- Compare student scores to group scores.
- Present visualizations of performance when requested by the teacher.

Interpretation:
- Include interpretation info and possibly a warning for misinterpretations.

Job seekers interview training

VIBOA: Environmental policy

IT system development

Example performance visualization

- Goal:
 - Provide teachers with reliable statistics on student performance in serious games and protect teachers against making interpretive mistakes.

- Approach:
 - Send student scores from a client side game to a server-side analytics system.
 - Compare student scores to group scores.
 - Present visualizations of performance when requested by the teacher.

- Interpretation:
 - Include interpretation info and possibly a warning for misinterpretations.
 - Note: the collection contains only 3 data points for this trial, therefore these scores may not represent the population performance! For a more accurate estimate, wait until more students have played the game.

\(N = 3 \)