Cortisol and induced cognitive fatigue: Effects on memory activation in healthy males

Elissa B. Klaassena,e,*, Renate H.M. de Groota,b,e, Elisabeth A.T. Everse, Nancy A. Nicolsona, Dick J. Veltmand, Jelle Jollese

a School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Maastricht University, The Netherlands
b Centre for Learning Sciences and Technologies (CELSTEC), Open University, The Netherlands
c Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California San Diego (UCSD), San Diego, USA
d Department of Psychiatry, VU University Medical Centre, & Neuroscience Campus Amsterdam, The Netherlands
e AIRE Research Institute & Faculty of Psychology and Education, VU University Amsterdam, The Netherlands

\textbf{A R T I C L E I N F O}

Article history:
Received 20 July 2012
Accepted 26 May 2013
Available online 3 June 2013

Keywords:
Cortisol
Induced cognitive fatigue
Functional MRI
Encoding
Recognition

\textbf{A B S T R A C T}

We investigated the relationship between individual differences in acute fatigue and endogenous cortisol changes elicited by the sustained performance of cognitively demanding tasks (fatigue condition). Healthy males provided salivary cortisol measurements and subjective fatigue ratings, and were scanned (functional magnetic resonance imaging) during memory encoding and recognition tasks in fatigue and control conditions. A group of 15 'responders' showed significantly higher cortisol levels in the fatigue condition than 12 'non-responders'. Responders showed higher subjective fatigue and reduced encoding and recognition activation than non-responders in the fatigue condition. An interaction in activation changes in the right hippocampus during encoding reflected decreased activation in responders, but somewhat increased activation in non-responders in the fatigue compared to control condition. Moreover, decreased hippocampal activation in responders was associated with increased subjective fatigue. Findings are consistent with a central role for the hippocampus in differences between responders and non-responders and also implicate the right hippocampus in individual differences in induced cognitive fatigue effects.

\textcopyright 2013 Elsevier B.V. All rights reserved.

\textbf{1. Introduction}

Fatiguing situations are commonly encountered in daily life and are associated with negative consequences, such as an increased risk of accidents. Cognitive fatigue can be defined as arising from the 'prolonged performance of cognitively demanding tasks requiring sustained mental efficiency' (Lorist, 2008). This acute state of induced cognitive fatigue is associated with increased subjective fatigue, behavioral performance decrements and decreased amplitude of event-related potential components (Boksem, Meijman, & Lorist, 2006; Kato, Endo, & Kizuka, 2009; Lorist, 2008; Lorist, Boksem, & Ridderinkhof, 2005; van der Linden, Frese, & Meijman, 2003). Cognitively demanding tasks have also been shown to elicit a cortisol stress response in some individuals (Bohnen, Houx, Nicolson, & Jolles, 1990; Kukoljka, Thiel, Wolf, & Fink, 2008). Yet, little is known about the differences between individuals who show a significant cortisol response (called responders) and individuals who do not (non-responders) in relation to induced cognitive fatigue. Relatively more is known about differences between responders and non-responders in the context of psychological stress paradigms and the effect of cortisol on memory performance, although insight into the neural correlates of memory effects is limited (van Stegeren, 2009). Therefore, in the present study, we aimed to determine differences between responders and non-responders in an induced fatigue condition (compared to a control condition) in terms of subjective fatigue, memory performance and memory-related brain activation (using functional magnetic resonance imaging; fMRI).

Cortisol, an adrenal corticosteroid, is released as a result of activation of the hypothalamic-pituitary-adrenal (HPA) axis. Cortisol secretion shows a strong circadian rhythm (levels typically increase in the hour following awakening and then decline over the rest of the day) as well as short-term increases in response to acute stress. The relationship between cortisol and fatigue appears to be complex, with results depending on whether fatigue is acute or chronic in nature. Cortisol has been linked to fatigue in...
studies showing reduced cortisol levels in chronic fatigue syn-
drome (CFS) (Jerjes, Cleare, Wessely, Wood, & Taylor, 2005; Nater et al., 2008; Silverman, Heim, Nater, Marques, & Sterk, 2010) and vital exhaustion (Nicolson & van Diest, 2000); a blunted cortisol response to wakening in relation to fatigue, burnout and exhaust-
ion in populations both with and without CFS (Chida & Steptoe, 2009); low waking cortisol levels and a flatter diurnal slope of cor-
tisol secretion in relation to current and future fatigue in a sample of healthy adults (Kumari et al., 2009); and CFS symptom allevia-
tion with cortisol administration (Rimes & Chalder, 2005). These
studies point to a relationship between chronic fatigue complaints and HPA axis dysregulation. However, there is also some evidence
linking acute task-induced fatigue and cortisol levels in healthy
adults, with reduced task-induced subjective fatigue found fol-
lowing exogenous cortisol administration (Reuter, 2002; Tops, van Peer, Wijers, & Korf, 2006). Hence, in the short-term (minutes to
hours), cortisol is thought to elicit energy mobilization and an asso-
ciated decrease in perceived fatigue as part of a generally adaptive
response called allostasis (McEwen, 2007). However, in the long-
term (weeks to months), frequent high cortisol levels in association
with chronic stress or ‘allostatic load’ (McEwen, 2007) may lead to
downregulation of the HPA axis, reflected in decreased cortisol
levels and reactivity, and ensuing chronic fatigue (Boksem & Tops,
2008).

In the current study, we focus on short-term effects in relation to
the acute cortisol response to stress. However, the induced fatigue
paradigm used in the present study differs somewhat from psycho-
logical stress paradigms commonly used to elicit an acute cortisol
response. Stress paradigms generally require demanding tasks to
be performed under conditions of uncontrollability or social eval-
uativeness threat and are commonly completed in less than 30 min
(Dickerson & Kemeny, 2004). Studies using psychological stress paradigms have primarily focused on the relationship between the
cortisol response and memory performance, consistently demon-
strating enhanced memory as a result of an acute increase in cortisol
during encoding, but memory impairment with increased corti-
sol during recognition (LaBar & Cabeza, 2006; Roozendaal, 2002;
Wolf, 2009). To our knowledge, our study is the first to examine
the effect of acute changes in endogenous cortisol levels elicited
by the sustained performance of cognitively demanding tasks over a
3 h period in relation to both memory (performance and brain
activation) and subjective fatigue. In the induced fatigue paradigm,
fatigue is thought to arise when resources used for sustained cogni-
tive effort are temporarily depleted (DeLuca, 2005). Therefore, we
hypothesized that the initially positive, fatigue-alleviating effects of the
cortisol response may become negative when prolonged task performance is required; the greater immediate mobiliza-
tion of resources in relation to the cortisol response may lead to
greater subsequent resource depletion and, thus, greater induced
fatigue effects during prolonged task performance. Indeed, a study
examining the effect of prolonged task performance on subse-
quent cognition in relation to the elicited cortisol response, showed
decreased attention in cortisol responders, although no effect was
found on verbal memory performance (Bohnen et al., 1990). Brain
activation changes in association with the cortisol response may be
specifically expected in the hippocampus, amygdala and pre-
frontal cortex (PFC), areas thought to play a central role in the effects
of cortisol on memory (Bangasser & Shors, 2010; de Quervain,
Roozendaal, Nitsch, McGaugh, & Hock, 2000; Oei et al., 2007) and
known to contain a high density of cortisol receptors (Gold, Drevets,
& Charney, 2002).

We scanned male school teachers during encoding and recogni-
tion tasks in an induced fatigue condition and a control condition
with the aim to determine differences between cortisol respon-
ders and non-responders. Responder and non-responder groups
were necessarily created post hoc based on cortisol response to
the fatigue condition. We hypothesized that respondents would
show greater induced fatigue effects including increased subjective
fatigue, impaired memory performance and an associated decrease
in brain activation. We expected activation differences in relation
to both study aims to be evident in the hippocampus, amygdala and
PFC, in particular, and therefore used region of interest (ROI)
analyses (in addition to whole brain analyses) to focus on these
areas. Findings provide insight into the contribution of the cortisol
response to individual differences in the effects of induced fatigue
on subjective fatigue and memory.

2. Methods

2.1. Participants

Participants were 27 healthy, right-handed, male school teachers aged 25–61 years. We restricted our sample population to males as gender differences in the effects of cortisol on both memory performance (Beck & Lune, 2010) and brain activation during stress tasks (Wang et al., 2005) have been found. Data from one participant were missing from the encoding task due to a scanner error. Volunteers who had suffered significant past or present physical or psychiatric illness, received medication (other than antihypertensives in two participants), or had MRI contra-
indications were excluded from participation. The study was approved by the local medical ethical committee at Maastricht University academic hospital. Participants gave informed consent prior to their (paid) voluntary participation.

2.2. Procedure

Participants completed a training session and two test sessions (control and fatigue conditions). The training session (administered in the week preceding the first test session) required participants to complete a neuropsychological test bat-
tery (Section 2.3) and practice the fMRI tasks in a dummy scanner to become familiarized with the scanning environment and minimize practice effects dur-
ing the test sessions. Test sessions took place during two consecutive weekends at 0900, 1100 or 1300 h (time of day was kept constant within participants). Par-
ticipants spent the first 1.5 h completing either the high cognitive demand fatigue manipulation or low demand control manipulation (administration order was ran-
domized). Outside the scanner (Section 2.4), they were then scanned during the encoding and recognition tasks (Section 2.5). Salivary cortisol levels were measured at four points (Section 2.6), while subjective mood ratings were collected at three points throughout the sessions (Section 2.7). The researcher operating the MRI scanner and instructing participants during scanning was blind to the manipulation the participants had just completed.

2.3. Neuropsychological testing

The visual verbal Word Learning Test (WLT) (Van der Elst, Van Bostel, van Breukelen, & Jolles, 2005) was administered as a measure of immediate and delayed memory recall and recognition, whereas the digit span (forward and backward) was administered as a test of short-term/working memory capacity (Lazak, Howison, & Loring, 2004). General cognitive functions were tested using the letter digit sub-
itigation test (LDST) (van der Elst, Van Bostel, van Breukelen, & Jolles, 2006) and the letter verbal fluency test (Van der Elst, Van Bostel, Van Breukelen & Jolles, 2006). The Dutch version of the National Adult Reading test (Nelson, 1991) was administered as a measure of mental ability (intelligence) based on vocabulary.

2.4. Fatigue manipulation

During the fatigue condition, participants performed the following tasks: 2 and 3-N-back task (3 × 10 min), Stroop task with additional simultaneous auditory pre-
sentation of incongruent color words (2 × 10 min), mental arithmetic (20 min), and brain teasers/puzzles (20 min). These tasks were selected for the high demands they place on a range of executive functions also subsequently involved in the scanning tasks. During the control condition, participants watched a documentary style DVD and/or read a magazine (e.g., the National Geographic) at their leisure.

2.5. fMRI encoding and recognition tasks

During the encoding (6 min) and recognition (16 min) tasks, 100 words were presented one by one on the screen. Words were divided equally into four seman-
tic categories: food (F), animals (A), utensils/tools (U) and landscape features (L).

During encoding, participants were instructed to indicate the category to which a word belonged by pressing the appropriate button, using the left- and right-hand middle and index fingers. The categories were displayed at the bottom of the screen as each word was presented (as: F A U L). Participants were aware that they would subsequently be required to remember the encoding task words. During recogni-
tion, the same 100 'old' words were presented, plus an additional 100 'new' words. Participants were instructed to indicate with a button-press response whether they
judged each word to be old or new, and how confident they were about this judgment. Response options therefore included: definitely old, probably old, probably new, and definitely new (displayed at the bottom of the screen as: Old 1 2 3 4 New). Encoding and recognition tasks were separated by a period of about 15 min, during which participants completed an unrelated task. In both tasks, words were presented in blocks of 8 stimuli followed by three null trials (consisting of a fixation point). Voids were displayed in the center of the screen for 2 sec, followed by a jittered inter-trial interval (500–1250 ms). In the training session, the tasks were practiced with 200 words from the categories sport, country, city and occupation.

Encoding task performance was examined in terms of overall accuracy and overall reaction time (RT). Recognition task performance was examined in terms of the number and corresponding RT of high and low confidence hits (correctly recognized old words) and correct rejections (correctly judged new words), and of misses (old words that were not recognized) and false alarms (new words judged to be old), regardless of confidence level. Additionally, recognition accuracy was examined using high confidence corrected recognition scores (hits minus false alarms). The corrected recognition score corrects for differences in the response criterion (participants who have a greater tendency to identify words as ‘old’ with high confidence during the recognition task will show more correctly judged ‘old’ words, but also more false alarms i.e. ‘new’ words incorrectly judged to be ‘old’).

2.6. Salivary cortisol

Saliva samples were collected upon arrival at the test session (time 0), between the fatigue manipulation and scanning session (time 1), approximately 40 min after the scanner (time 2) and at the end of the scan session (time 3). In relation to the fMRI tasks, samples were collected approximately 10 min prior to the encoding task (time 2 sample) and immediately following the recognition task (time 3 sample). An additional baseline sample was collected on a separate day (usually at the start of the training session) at the same time as the time 0 samples, to control for possible anticipation effects in relation to the test session. Saliva samples were collected using Salivettes (Sarstedt, The Netherlands) and stored at −20 °C until assayed. Salivary free cortisol levels were determined by a chemiluminescence assay (CLIA) with a high sensitivity of 0.16 ng/ml (IBL, Hamburg, Germany).

2.6.1. Area under the curve calculation

The change in salivary cortisol levels throughout the test sessions (in relation to baseline, calculated as the average of the time 0 sample and the additional training session baseline sample) was determined according to a formula for the calculation of the area under the curve with respect to time (AUCt) (Pressman, Meinlschmid, & Hellhammer, 2003). The major advantages of using AUCt values are that one score is calculated from the repeated measurements and the varying times between repeated measurements are taken into account.

2.7. Subjective ratings

The Dutch short visual analog scale version of the Profile of Mood States (POMS) (Wald & Meijlenbergh, 1990) was administered at time 3, coinciding with the actual cortisol measurement time 0, 1 and 3. The POMS Fatigue (5 items: 0 = low fatigue, 100 = high fatigue) and Vigor (5 items: 0 = low vigor, 100 = high vigor) subscales are recommended measures of the mood of energy and fatigue in investigations that are short in duration (e.g., a few hours, O’Connor, 2006); the fatigue, vigor and tension (6 items: 0 = low tension, 100 = high tension) subscales have shown sensitivity to cortisol effects (e.g., Tops et al., 2006).

To assess longer-term feelings of mental fatigue, we administered the following four VAS questions during the training session: ‘In the past week, to what degree has fatigue interfered with your ability to (a) plan activities ahead of time, (b) think clearly, (c) think quickly, (d) learn new things’ (Dijkers & Bushnik, 2008).

2.8. MRI data acquisition

Scans were made in a 3 T Philips whole body scanner (Philips Achieva, Philips Medical Systems, Best, The Netherlands). A body coil was used for RF transmission and an 8-element SENSE head coil (SENSE-factor 2) for signal detection. During encoding and recognition tasks, approximately 180 and 480 EPI scans were made, respectively (TR = 2.0 s, TE = 35 ms, number of slices = 32, image matrix = 64 × 64, voxel size = 4 mm × 4 mm × 3.5 mm). A TI-weighted anatomical scan was also acquired for anatomical reference and coregistration of the two test sessions (image matrix = 256 × 256, number of slices = 150, voxel size = 1 mm × 1 mm × 1 mm).

2.9. MRI data analysis

SPM5 (Statistical Parametric Mapping: Wellcome Trust Center for Neuroimag- ing, Institute of Neurology, University College London) was used to preprocess the fMRI scans. Preprocessing steps included: slice time correction, realign and unwarped, coregistration (session 2 scans were coregistered to session 1 scans), spatial normalisation (MNLI space, EPI template), and smoothing (PWH M 8 mm). Data were analyzed in the context of the general linear model, using boxcar regressors convolved with the canonical hemodynamic response to model experimental trial blocks (consisting of 8 trials interspersed with three null trials) during encoding and recognition in each condition. In addition, motion parameters were included to correct for motion-related activation.

Encoding and recognition task activation contrasts were computed for each participant by contrasting activation during experimental blocks with null blocks (implicit baseline). Task-related activation during encoding and recognition was examined by entering individual activation contrasts from the control condition in all measurements into one time course and including a false positive error (FWE) corrected for multiple comparisons). Activation differences between responders and non-responders in the control and fatigue conditions, and the interaction between cortisol response group and fatigue condition was investigated at the whole brain level, as well as within hippocampal, amygdala and PFC regions using second level two-condition (responder vs. non-responders) by two (control vs. fatigue condition) full factorial models, for encoding and recognition separately. Whole brain effects were examined at p(FWE) < 0.05 and at the uncorrected level p < 0.01 (with a cluster size threshold > 10 voxels, masked inclusively at p < 0.05 to restrict the search for effects to those voxels that showed a main effect of task). ROI analyses were conducted using the MarsBaR toolbox for SPM (Brett, Anton, Valabregue, & Poline, 2002). ROIs were defined using AAL areas (Tzourio-Mazoyer et al., 2002) including the bilateral hippocampus, amygdala, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus and anterior cingulate cortex (with PFC areas selected based on primary encoding and recognition activation found in a meta-analysis by Spaniol et al., 2009), with reported effects significant after correction for multiple comparisons (p < 0.05).

2.10. Behavioral and salivary cortisol statistics

Behavioral and salivary cortisol analyses were carried out using PASWStatistics (version 18.0). We conducted a k-means cluster analysis based on cortisol response (AUCt) values to the fatigue condition to identify responder and non-responder groups (in line with previous studies, e.g., Khalili-Mahani, Dedovic, Engel, Pruessner, & Pruessner, 2010). To gain insight into the change in cortisol levels throughout the test sessions in each group, we also examined cortisol values at each time point, using a repeated measures analysis of variance (ANOVA). A one-way ANOVA was used to compare responders and non-responders on the neuropsychological tests and past-week fatigue VAS. The effects of cortisol response group and induced fatigue condition on the POMS subscales and encoding and recognition task performance were investigated using repeated measures ANOVA.

3. Results

The cluster analysis identified 15 responders and 12 non-responders. As groups were created post hoc, the order of fatigue condition administration was not balanced and was therefore included as a covariate in all analyses (5 non-responders and 9 responders started in the control condition). Furthermore, although mean age did not differ significantly between groups (non-responders mean age = 43.3, SD = 13.4, range = 27–61; responders mean age = 45.8, SD = 12.6, range = 25–60), age was also included as a covariate (continuous variable) in all analyses in light of the relatively wide age range of our sample. The groups were also unbalanced with regard to time of day of test administration (non-responders: 2 × 0900 h, 4 × 1100 h, 6 × 1300 h; responders: 5 × 0900 h, 7 × 1100 h, 2 × 1300 h). Time of day is an important factor in cortisol measurement due to diurnal fluctuations in cortisol levels. However, since we calculated AUCt values instead of the total cortisol output, baseline differences in cortisol were unlikely to have an effect. Indeed, Kudielka, Schommer, Hellhammer, and Kirschbaum (2004) showed that the stress-induced salivary cortisol increase from baseline does not differ in the morning and afternoon (but see Dickerson & Kemeny, 2004). Nevertheless, we conducted a repeated measures ANOVA that confirmed that AUCt values did not differ significantly between the different test times, and time of day did not interact with fatigue condition.

3.1. Salivary cortisol

The analysis of cortisol levels over all time points showed a main effect of cortisol response group (F(1, 25) = 6.74, p = 0.016), a main effect of fatigue condition (F(1, 25) = 6.93, p = 0.014), a main effect of time point (F(3, 75) = 6.70, p < 0.001), a significant interaction between cortisol response group and time point (F(3, 75) = 7.44, p < 0.001) and a trend for a three-way interaction between cortisol
response group, fatigue condition and time point ($F(3,75)=2.48, p = .068$). Cortisol levels (Fig. 1) were significantly higher in responders than non-responders in the fatigue condition at time 1 ($F(1,23)=13.72, p = .001$), time 2 ($F(1,23)=4.98, p = .036$) and time 3 ($F(1,23)=5.83, p = .024$). Furthermore, non-responders showed a significant decrease in cortisol levels from time 0 to time 1 in the control ($t(11)=4.14, p = .002$) and the fatigue condition ($t(11)=6.87, p < .001$). Responders, on the other hand, showed an increase in cortisol levels from time 0 to time 1 in the fatigue condition ($t(14)=2.75, p = .016$). However, inspection of fatig condition AUC values (see Supplementary material Fig. S1) reveals that our ‘responder’ group can be more accurately described as consisting of participants showing an increase in cortisol levels as well as participants showing little change in overall cortisol levels, whereas the ‘non-responder’ group consists of participants showing a decrease in cortisol levels. As such, we speculate that our non-responder group may reflect the normal decline in cortisol levels found across the day (diurnal cortisol rhythm), whereas the responder group may reflect interference with this normal decrease as a result of the fatigue condition, leading to either relatively unchanged or increased cortisol levels.

3.2. Neuropsychological test performance

Scores did not differ significantly between responders and non-responders on any of the tests (Table 1).

3.3. Subjective ratings

Analysis of the POMS subscales (Table 2) showed a near-significant main effect of cortisol response group ($F(1,23)=4.15, p = .053$) on the fatigue subscale. Follow-up tests showed higher fatigue ratings in responders than non-responders in the fatigue condition following the manipulation (time 1: $F(1,23)=5.70, p = .026$) and persisting till after the scan session (time 3: $F(1,23)=4.67, p = .041$). A main effect of cortisol response group was found on the vigor subscale ($F(1,23)=9.55, p = .005$), indicating lower vigor in responders than non-responders. A follow-up test confirmed that vigor levels also differed between groups at baseline (time 0: $F(1,23)=5.33, p = .030$).

A main effect of fatigue condition was found on the tension subscale ($F(1,23)=10.07, p = .004$), along with a (near) significant interaction between fatigue condition and time ($F(2,46)=3.26, p = .051$). Follow-up tests showed that tension ratings were higher in all participants following the fatigue compared to the control manipulation (time 1: $F(1,23)=4.85, p = .038$).

Ratings on the past-week VAS questions showed that responders felt that fatigue interfered more with their ability to plan activities ($F(2,26)=5.75, p = .020$; responders mean = 29.8, SD = 20.2; non-responders mean = 14.8, SD = 7.2), think clearly ($F(2,26)=5.79, p = .024$; responders mean = 33.7, SD = 20.2; non-responders mean = 18.3, SD = 12.5) and (a trend to) think quickly ($F(2,26)=3.76, p = .064$; responders mean = 39.9, SD = 24.0; non-responders mean = 23.5, SD = 16.6) than non-responders.

3.4. Encoding and recognition task performance

No significant differences in accuracy (Table 3) or RT were found between responders (control mean = 1152 ms, SD = 158; fatigue mean = 1148 ms, SD = 138) and non-responders during encoding (control mean = 1160 ms, SD = 103; fatigue mean = 1152 ms, SD = 141). RTs also did not differ between responders (control mean = 1343 ms, SD = 185; fatigue mean = 1296 ms, SD = 218) and non-responders (control mean = 1383 ms, SD = 139; fatigue

Table 2

Mean subjective ratings (with standard deviation) on the Profile of Mood States subscales.

<table>
<thead>
<tr>
<th>Time</th>
<th>Non-responders</th>
<th>Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Fatigue</td>
<td>0</td>
<td>16 (12)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>21 (12)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>27 (16)</td>
</tr>
<tr>
<td>Vigor</td>
<td>0</td>
<td>88 (10)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>81 (12)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>74 (18)</td>
</tr>
<tr>
<td>Tension</td>
<td>0</td>
<td>14 (10)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>12 (11)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14 (12)</td>
</tr>
</tbody>
</table>

Table 1

Participant scores on the neuropsychological tests.

<table>
<thead>
<tr>
<th>Test</th>
<th>Responders</th>
<th>Non-responders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>WLT immediate free recall</td>
<td>11.7</td>
<td>2.4</td>
</tr>
<tr>
<td>WLT delayed free recall</td>
<td>10.3</td>
<td>3.4</td>
</tr>
<tr>
<td>WLT delayed cued recall</td>
<td>14.3</td>
<td>1.1</td>
</tr>
<tr>
<td>Digit span</td>
<td>17.8</td>
<td>3.8</td>
</tr>
<tr>
<td>LDST</td>
<td>55.8</td>
<td>7.2</td>
</tr>
<tr>
<td>Letter fluency</td>
<td>16.0</td>
<td>3.6</td>
</tr>
<tr>
<td>National adult reading test</td>
<td>84.5</td>
<td>8.4</td>
</tr>
</tbody>
</table>

Abbreviations: SD, standard deviation; WLT, Word Learning Test; LDST, letter digit substitution test.

Note: No significant differences were found between responders and non-responders on any of the tests.
mean = 1383 ms, SD = 166) during recognition. Recognition task accuracy differences were found with regard to high confidence corrected recognition scores: scores were higher in non-responders than responders (F(1, 23) = 4.43, p = .046), although no interaction was found with fatigue condition.

3.5. fMRI results

Task-related activation in the control condition related to encoding and recognition, regardless of cortisol response, is provided in Supplementary material S1. No whole-brain activation differences were found between responders and non-responders in the control condition during encoding or recognition. In the fatigue condition, activation was significantly greater in non-responders than responders during both encoding and recognition (Table 4). Encoding activation was greater in non-responders in the right DMPFC, bilateral VLPFC, left posterior temporal cortex and right superior and bilateral inferior parietal cortex, left caudate and putamen, and right thalamus. An interaction between the effect of cortisol response group and fatigue condition on encoding activation was found at the whole brain level in the right hippocampus that neared significance at p(FWE) < .05 (coordinates x = 27, y = −12, z = −21; t-value = 5.07; cluster size = 89, p(FWE) = .052) (Fig. 2A), whereas no interaction effect was evident in relation to recognition activation. ROI analysis confirmed a significant interaction during encoding within the right hippocampal ROI (t-value = 2.95, p = .034), but did not reveal an interaction effect in any of the other ROIs during either encoding or recognition. The interaction in the right hippocampal ROI reflected reduced encoding activation in the fatigue compared to the control condition in responders (t-value = 1.99, p = .027), but somewhat of an increase in activation in non-responders (t-value = 1.56, p = .062) (Fig. 2B). Furthermore, activation in the right hippocampal ROI was greater in non-responders than

Table 3

Mean accuracy (with standard deviation) on the encoding and recognition tasks.

<table>
<thead>
<tr>
<th>Judgment</th>
<th>Non-responders</th>
<th>Responders</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Fatigue</td>
</tr>
<tr>
<td>Encoding task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td>94 (3)</td>
<td>93 (4)</td>
</tr>
<tr>
<td>Recognition task</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High confidence hits</td>
<td>58 (20)</td>
<td>62 (11)</td>
</tr>
<tr>
<td>High confidence corrected recognition</td>
<td>47 (16)</td>
<td>51 (11)</td>
</tr>
<tr>
<td>Low confidence hits</td>
<td>14 (11)</td>
<td>14 (8)</td>
</tr>
<tr>
<td>Misses</td>
<td>27 (12)</td>
<td>22 (13)</td>
</tr>
<tr>
<td>High confidence correct rejections</td>
<td>48 (27)</td>
<td>44 (24)</td>
</tr>
<tr>
<td>Low confidence correct rejections</td>
<td>29 (22)</td>
<td>30 (15)</td>
</tr>
<tr>
<td>High confidence false alarms</td>
<td>11 (8)</td>
<td>11 (9)</td>
</tr>
<tr>
<td>Low confidence false alarms</td>
<td>10 (9)</td>
<td>13 (10)</td>
</tr>
</tbody>
</table>

*Significant differences between responders and non-responders.

Table 4

Activation differences between responders and non-responders in the fatigue condition during encoding and recognition.

<table>
<thead>
<tr>
<th>Region</th>
<th>BA</th>
<th>MNI coordinates</th>
<th>t-Value</th>
<th>Cluster size (voxels)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Encoding task: non-responders > responders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventrolateral PFC</td>
<td>R</td>
<td>48</td>
<td>47</td>
<td>45</td>
</tr>
<tr>
<td>Temporo-parietal junction</td>
<td>R</td>
<td>48</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td>Superior parietal</td>
<td>L</td>
<td>7</td>
<td>6</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>7</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Putamen</td>
<td>L</td>
<td>−</td>
<td>18</td>
<td>−</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>−</td>
<td>21</td>
<td>15</td>
</tr>
<tr>
<td>Recognition task: non-responders > responders</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dorsomedial PFC</td>
<td>L</td>
<td>8</td>
<td>−6</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>8</td>
<td>21</td>
<td>6</td>
</tr>
<tr>
<td>Ventrolateral PFC</td>
<td>L</td>
<td>45</td>
<td>−42</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>48</td>
<td>51</td>
<td>21</td>
</tr>
<tr>
<td>Posterior temporal</td>
<td>L</td>
<td>21</td>
<td>−42</td>
<td>−39</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>37</td>
<td>−45</td>
<td>−51</td>
</tr>
<tr>
<td>Superior parietal</td>
<td>L</td>
<td>5</td>
<td>15</td>
<td>−57</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>7</td>
<td>15</td>
<td>−66</td>
</tr>
<tr>
<td>Inferior parietal</td>
<td>L</td>
<td>40</td>
<td>−48</td>
<td>−45</td>
</tr>
<tr>
<td></td>
<td>R</td>
<td>40</td>
<td>39</td>
<td>−45</td>
</tr>
<tr>
<td>Caudate</td>
<td>L</td>
<td>−</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>Putamen</td>
<td>L</td>
<td>−</td>
<td>21</td>
<td>18</td>
</tr>
<tr>
<td>Thalamus</td>
<td>R</td>
<td>−</td>
<td>12</td>
<td>−18</td>
</tr>
</tbody>
</table>

*Italicics indicate multiple peak activation voxels within an activation cluster. Effects are significant at p(uncorrected) < .001.

* Indicates clusters significant at p(FWE) < .05.
responders in the fatigue condition (t-value = 3.12, p = .002), but did not differ in the control condition. Greater activation in non-responders than responders in the fatigue condition was also evident in the right inferior frontal gyrus ROI during both encoding (t-value = 3.04, p = .027) and recognition (t-value = 3.07, p = .024), and in the left superior frontal gyrus ROI during recognition (t-value = 3.12, p = .002).

3.6. Post hoc correlations

In ROIs showing a significant interaction between cortisol response group and fatigue condition (the right hippocampal ROI), we also examined the relationship between activation differences (control compared to fatigue condition) and subjective fatigue ratings (the change from time 0 to time 1 in the control compared to fatigue condition) and task performance (high confidence corrected recognition scores in the control compared to fatigue condition) using a simple regression analysis in SPM8. In the responder group, a significant negative relationship was found between encoding activation in the right hippocampal ROI and fatigue ratings (t-value = 2.11, p = .028), indicating that a greater decrease in activation (in the fatigue compared to the control condition) was associated with a greater increase in fatigue ratings (Fig. 2C).

Correlation analyses were also used to examine the relationship between control and fatigue session cortisol AUC values and each outcome measure over all participants (i.e., regardless of cortisol response group). The overall pattern of findings confirmed the ANOVA results (details of the correlation analyses results are provided in Supplementary material). Specifically, no relationship was found between cortisol AUC values and scores on the neuropsychological tests or performance scores on the fMRI encoding and recognition tasks. Correlation analyses confirmed the positive relationship between cortisol AUC values and subjective fatigue, and the negative relationship between cortisol AUC values and subjective vigor ratings. The relationship between the cortisol response and responses on the past-week VAS questions also confirmed the ANOVA findings; cortisol AUC values correlated positively with ratings regarding the extent to which fatigue interfered with participants’ ability to plan activities and think clearly. Finally, correlation analyses confirmed the decrease in brain activation with increasing cortisol AUC values during the encoding and recognition tasks in the fatigue condition. The only difference between the reported ANOVAs and the supplementary correlation analyses were some additional significant correlations between cortisol AUC values and past-week VAS ratings. Specifically, cortisol AUC values in the control condition showed a positive correlation with the frequency of feelings of fatigue over the last week, the extent to which teachers found their job fatiguing, and the extent to which they found their daily activities fatiguing.

4. Discussion

We investigated the relationship between cortisol and cognitive fatigue induced by the sustained performance of cognitively demanding tasks. The fatigue condition resulted in higher subjective fatigue ratings, indicating that a state of increased fatigue was successfully induced compared to the control condition. Furthermore, an accompanying increase in feelings of tension was found, providing some indication of the elicitation of a stress response in the fatigue condition. Analysis of salivary cortisol levels demonstrated that the fatigue manipulation indeed elicited a stress response, indexed by relatively elevated cortisol levels, in a group of 15 responders out of the total 27 participants. Studies using psychological stress paradigms have similarly reported the categorization of around 50% of participants as responders (Dedovic, Duchesne, Andrews, Engert, & Pruessner, 2005). Inspection of cortisol levels throughout the test session showed that cortisol levels increased further after participants entered the scanner, indicating that the scanner itself may also have contributed to the stress response (Muehlhan, Lueken, Wittchen, & Kirschbaum, 2011).

Cortisol responders and non-responders were well matched with regard to demographic characteristics including gender, education level and occupation as a result of the homogenous study population of male school teachers. Moreover, the two groups did not differ significantly with respect to baseline cortisol levels, subjective fatigue and tension ratings or neuropsychological task performance. However, subjective vigor ratings revealed lower feelings of vigor in responders than in non-responders at baseline. Furthermore, responders indicated that they felt that fatigue interfered more with their ability to plan activities and think clearly during the last week than non-responders. Given that responders...
showed greater cortisol and fatigue levels in response to the sustained performance of demanding tasks in our study, their ratings in relation to feelings of fatigue over the last week may indicate that they also experienced increased cortisol and fatigue levels in response to the performance of demanding tasks in everyday life. Such frequent high cortisol responses are thought to be a precursor to the allostatic down-regulation of the HPA axis seen in chronic fatigue (Boksem & Tops, 2008). Therefore, cortisol responders in our study may represent an intermediary stage where cortisol reactivity is elevated and some more long-term differences have begun to appear, such as lower vigor levels following a demanding working week as a school teacher. Proper investigation of this possibility would require future studies to include more comprehensive long-term fatigue measures, along with measures of chronic HPA axis function.

Differences between cortisol responders and non-responders were found in relation to subjective fatigue ratings, memory performance and memory-related brain activation. Responders showed higher fatigue ratings than non-responders in the fatigue condition, supporting an association between cortisol and fatigue. This finding indicates that feelings of fatigue arising from the sustained performance of cognitively demanding tasks may be exacerbated when accompanied by a physiological stress response. In line with our hypothesis, we suggest that higher fatigue levels in responders may reflect greater resource exhaustion in this group following an initially greater increase in resource mobilization in relation to the cortisol response. However, future studies should collect more frequent fatigue and cortisol measurements in order to obtain a more detailed picture of the relationship between these factors over time. Furthermore, more research is needed to elucidate the complex relationship between acute-immediate, acute-prolonged and chronic cortisol levels and fatigue.

Responders showed poorer recognition accuracy than non-responders, however, this difference was evident in both the control and fatigue condition. Hence, increased cortisol levels in responders in the fatigue condition were not associated with greater recognition impairment. This difference therefore reflects baseline differences in recognition accuracy between the responder and non-responder groups. This difference may indicate that responders found the recognition task more difficult and, consequently, experienced higher levels of stress and fatigue than non-responders when this task was administered following the prolonged performance of other demanding tasks in the fatigue condition. As such, it is possible that responders also experience demanding tasks encountered during everyday life as more difficult/demanding than non-responders and thus report greater past-week fatigue complaints. Alternatively, greater longer-term fatigue complaints experienced by responders may impact negatively on baseline cognitive performance (this impact may be especially evident on more demanding tasks, such as the recognition task, rather than on the neuropsychological test battery we administered). However, this explanation does not account for the lack of a further decrease in cognitive performance in responders in the fatigue condition despite higher subjective fatigue levels.

Reduced brain activation was evident in responders during encoding and recognition in the fatigue condition in comparison to non-responders, in line with the suggestion that responders are primarily characterized by greater whole-brain activation decreases (Pruessner et al., 2008). The investigation of the interaction between cortisol response and fatigue condition revealed a significant interaction in the right hippocampus during encoding. This interaction reflected significantly decreased activation in the fatigue compared to the control condition in responders, but somewhat of an increase in activation in non-responders. This difference in hippocampal activation between responders and non-responders may be associated with differences in encoding efficiency. Indeed, the hippocampus has been consistently implicated in memory encoding. However, in line with previous studies (Spaniol et al., 2009), more robust task-related hippocampal activation during verbal memory encoding was evident in the left rather than the right hippocampus. Furthermore, the change in hippocampal activation correlated significantly with subjective fatigue levels, rather than subsequent recognition performance. Therefore, we suggest that activation differences in the right hippocampus may more likely reflect the involvement of this area in differences in arousal/fatigue state (e.g., via the nucleus incertus: Ryan, Ma, Olucha-Bordonau, & Gundlach, 2011) between responders and non-responders than cortisol-induced blockade of memory encoding processes.

Nevertheless, our findings are congruous with the suggestion that the hippocampus plays a central role with regard to activation differences between responders and non-responders (Dedovic, Rexroth, et al., 2009; Khalili-Mahani et al., 2010; Pruessner et al., 2008). Moreover, our findings extend current knowledge by demonstrating that the right hippocampus may also play a central role in the relationship between short-term changes in cortisol and fatigue levels. However, we did not find support for the suggestion that the pre-stress activation state of the hippocampus is involved in determining individual differences in the cortisol response (Khalili-Mahani et al., 2010), as hippocampal activation did not differ significantly between responders and non-responders in the control condition. The primary involvement of the hippocampus in differences between responders and non-responders is unsurprising given the high concentration of cortisol receptors in this area. Accordingly, it has been suggested that the hippocampus may play a critical role in “processing psychological conditions that trigger the HPA axis response” (Herman & Cullinan, 1997). It is therefore possible that activation changes in the right hippocampus may be central to both the elicitation of short-term changes in HPA axis function and associated fatigue levels as well as in the etiology of HPA axis dysfunction and chronic fatigue.

With regard to the comparison of responders to non-responders in general, we note that due to the high inter-individual variability in the cortisol response, responder and non-responder groups represented a considerable range of cortisol responses. Hence, fMRI studies with larger sample sizes are needed to allow the creation of more homogeneous cortisol response groups to better investigate group differences.

In conclusion, we demonstrated that individual differences in the cortisol response elicited by an induced fatigue paradigm were associated with significant differences in the effect of this paradigm on subjective fatigue ratings and brain activation. Findings provide insight into individual differences in the severity of induced fatigue effects and indicate that individuals who react with a physiological stress response to, for example, a demanding workday may suffer exacerbated fatigue-related complaints. These results are particularly relevant to population groups engaged in professions with high cognitive demands, such as the school teachers examined in the present study. However, due to their busy work schedule, participants representing such population groups are also particularly difficult to recruit, especially for fMRI studies requiring a substantial time commitment. Hence, our study is somewhat limited by a small sample size. Nevertheless, studies such as ours in working professionals are important to our understanding of factors affecting workplace performance and work-related fatigue.

Funding source
This research was supported by Maastricht University.