An R Package for Latent Semantic Analysis
LSA-TEL, March 29th 2007, Heerlen, NL

Fridolin Wild
Vienna University of Economics and Business Administration
Structure of the Talk

- Concepts of the Package
- Analysis Process
- Driving Parameters
- Evaluating Algorithm Effectiveness
- Demo I: Essay Scoring
- Demo II: Coding Qualitative Interviews
- Demo III: The Geometry of Meaning
- Conclusion & Future Plans
Concepts used in the *lsa* Package for R
Singular Value Decomposition

\[M = T S D^T \]
Latent Semantic Structure

- Assumption: ‘language’ utterances have a semantic structure, i.e. a certain form in their meaning
- However: this structure is obscured by word usage (noise, synonymy, polysemy, …)
- Proposed solution: map doc-term matrix using conceptual indices derived statistically (truncated SVD)
Concepts used in the Package

- **Term** = feature
- **Vocabulary** = ordered set of features
- **Corpus** = document collection
- **Textmatrix** = occurrence matrix (of terms in documents)
- **Weighting** = specifies the importance of certain features
- **Latent-Semantic Space** = SVD partial matrices
- **Dimension** = singular value
- **Folding In** = adding additional evidence
- **Distance / Similarity** = measure for semantic distance
- **Query** = pseudo document used to identify similar documents
The Package

- Available via CRAN, e.g.:
 http://cran.at.r-project.org/src/contrib/Descriptions/lsa.html

- Higher-level Abstraction to Ease Use
 - Five core methods:
 - `textmatrix()` / `query()`
 - `lsa()`
 - `fold_in()`
 - `as.textmatrix()`
 - Supporting methods for term weighting, dimensionality calculation, correlation measurement, triple binding
Analysis Process
Core Workflow

- \(\text{tm} = \text{textmatrix}('dir/') \)
- \(\text{tm} = \text{lw} \text{ logtf}(\text{tm}) \times \text{gw_idf}(\text{tm}) \)
- \(\text{space} = \text{lsa}(\text{tm},\) \text{dims=dimcalc_share()} \)
- \(\text{tm3} = \text{fold_in}(\text{tm}, \text{space}) \)
- \(\text{as.textmatrix}(\text{tm}) \)
SVD-Updating: Folding-In

- SVD factor stability
 - SVD calculates factors over a given text base
 - Different texts – different factors
 - Challenge: avoid unwanted factor changes (e.g., bad essays)
 - Solution: folding-in of essays instead of recalculating

- SVD is computationally expensive
 - 14 seconds (300 docs textbase, this machine)
 - 10 minutes (3500 docs textbase, this machine)
 - … and rising!
Driving Parameters
LSA Process & Driving Parameters

Textbase Selection
- documents
- chapters
- paragraphs
- sentences
- context bags
- number of docs

Pre-processing
- stemming
- stopword filtering
- global or local frequency bandwidth channel
- controlled vocabulary
- raw

Weighting
- local weights:
 - none (raw)
 - binary tf
 - log tf
- global weights:
 - none (raw)
 - normalisation
 - idf
 - 1+entropy

Dimensionality
- singular values k:
 - coverage
 - $= 0.3, 0.4, 0.5$
 - $\geq \text{n docs}$
 - $1/30$
 - $1/50$
 - magic 10
 - none (vector m.)

Similarity Measurement
- method:
 - best hit
 - mean of best
- correlation measure:
 - pearson
 - spearman
 - cosine
Term Weighting Schemes

\[\text{weight}_{ij} = \text{lw}(tf_{ij}) \cdot \text{gw}(tf_{ij}) \]

- **Global Weights (GW)**
 - None (‘raw’ \(tf \))
 - Normalisation
 \[
 \text{norm}_i = \frac{1}{\sqrt{\sum_j tf_{ij}^2}}
 \]
 - Inverse Document Frequency (IDF)
 \[
 \text{idf}_i = \log_2 \left(\frac{\text{numdocs}}{\text{docfreq}(i)} \right) + 1
 \]
 - 1 + Entropy
 \[
 \text{entplusone}_i = 1 - \sum_j \frac{p_{ij} \log p_{ij}}{\log \text{numdocs}}, \text{ where } p_{ij} = \frac{tf_{ij}}{\sum_j tf_{ij}}
 \]

- **Local Weights (LW)**
 - None (‘raw’ \(tf \))
 - Binary Term Frequency
 - Logarithmized Term Frequency (log)
SVD-Dimensionality

- Fixed number k
 \[
 \text{lsa}(\text{tm}, \text{dims}=50)
 \]

- Percentage of cumulated values (50%, 40%, 30%)
 \[
 \text{lsa}(\text{tm}, \text{dims} = \text{dimcalc_share(share=0.5)})
 \]

- Share of values = number of docs
 \[
 \text{lsa}(\text{tm}, \text{dims} = \text{dimcalc_ndocs(100)})
 \]

- Absolute fraction of k (1/50 and 1/30)
 \[
 \text{lsa}(\text{tm}, \text{dims} = \text{round(k/50)})
 \]

- ‘magic 10’
 \[
 \text{lsa}(\text{tm}, \text{dims}=10)
 \]

- Kaiser Criterium
 \[
 \text{lsa}(\text{tm}, \text{dims} = \text{dimcalc_kaiser()})
 \]

- Raw (= no LSA, pure vector model!)
 \[
 \text{lsa}(\text{tm}, \text{dims} = \text{dimcalc_raw()})
 \]
Similarity / Distance Measures

- Cosine (part of the package)
- Pearson (cor)
- Spearman’s R (cor)
- Kendall (cor)
- ...

- R package in planning stage by David Meyer, Kurt Hornik, …
Binding of Triples

- Solution to the symbol-grounding problem ;)
- Triples (subject, predicate, object)
- Bind triples to documents

```python
setTriple(myMatrix, "c1", "category", "cats")
setTriple(myMatrix, "c1", "category", "dogs")
geTriple(myMatrix) => all
gtTriple(myMatrix, "c1", "category") => cats, dogs
```
Evaluating Algorithm Effectiveness
Evaluating Algorithm Effectiveness

- Compare Machine Scores with Human Scores

- Human-to-Human Correlation
 - Usually around 0.6
 - Increased by familiarity between assessors, tighter assessment schemes, ...
 - Scores vary even stronger with decreasing subject familiarity (0.8 at high familiarity, worst test -0.07)

Test Collection: 43 German Essays, scored from 0 to 5 points (ratio scaled), average length: 56.4 words
Training Collection: 3 ‘golden essays’, plus 302 documents from a marketing glossary, average length: 56.1 words
Benchmarking Effectiveness

- **Global Weights:**
 - IDF overall best (.36 with logtf)
 - Normalisation worsens (.15 - .17)
 - 1+Entropy: nearly no effect

- **Local Weights:**
 - hardly any effect
 - raw and logtf squeeze curve

- **Best 50:**
 - 20 x bintf
 - 19 x logtf
 - 11 x raw
 - 26 x IDF
 - 13 x raw
 - 6 x normalisation
 - 5 x 1+entropy

(Wild et al., 2005)
Demonstrations
Demo I: Essay Scoring with LSA

domain specific documents

construct latent semantic space

LSA

convert vectors

fold-in

test essays &
gold standard essays

generic background documents

compare vectors

0.2
0.2
0.8
library("lsa") # load package

load training texts
trm = textmatrix("trainingtexts/")
trm = lw_bintf(trm) * gw_idf(trm) # weighting
space = lsa(trm) # create an LSA space

fold-in essays to be tested (including gold standard text)
tem = textmatrix("testessays/", vocabulary=rownames(trm))
tem_red = fold_in(tem, space)

score an essay by comparing with
gold standard text (very simple method!)
cor(tem_red[,"goldstandard.txt"], tem_red[,"E1.txt"])
=> 0.7
Demo II: Qualitative Interviews

Table 2
Correlations between LSA and human scores in the European mobile phone market.
library("lsa"); data(stopwords_de); # load package & German stopwords

read interview texts
tm = textmatrix("A1", stopwords=stopwords_de)
space = lsa(tm, dims=dimcalc_share(share=0.5))
space.tm = as.textmatrix(space)

read coding scheme & human scores
cs = readLines("codingscheme.txt")
humanscores = read.delim2("humanscores_A1.txt", sep="\n", header=F)

calculate machine scores
scores = vector(mode="numeric",length=length(cs))
names(scores) = cs
cutoff = 0.5
for (n in 1:length(cs)) {
 q.cs = query(cs[n], termlist = rownames(space.tm))
 q2.cs = fold_in(q.cs,space)
 space.query.tm = cbind(space.tm,q2.cs)
 correlation = cor(space.query.tm, method="pearson")
 scores[n] = length(which(correlation[135,1:134]>cutoff))*100/ncol(space.tm)
}

evaluate effectiveness
cor.test(scores, humanscores, method="spearman", alternative="two.sided", exact=F)
Demo III: Geometry of Meaning
Semantic Relations in a Latent Semantic Space

Pearson(eu, österreich) Pearson(jahr, wien)
file in a corpus
mymatrix=textmatrix("kurier1200/", stopwords=stopwords_de)

randomize document order
rnd_sample = sample(1:ncol(mymatrix))
sample_matrix = mymatrix[,rnd_sample]

calculate term-to-term similarities with increasing
matrix size and increasing number of dimensions
for (i in docseq) {
 m = sample_matrix[-(which(rowSums(sample_matrix[,1:i])==0)),1:i]
 for (dim in dimseq) {
 space = lsa(m, dims=dim)
 redm = as.textmatrix(space)
 ttsim = append(ttsim, cor(redm["eu"], redm["österreich"])
 }
}

Conclusion & Future Plans

- Pre-Processing chain can be better organised
- Better Error Handling
- Use Sparse Matrices
- Use partial SVD with Lanczos
- Huge optimisation potential in corpus compilation – selection model? Training process?
- Huge optimisation potential in parameter tuning – model?
- Fast and simple predictors for parameter tuning?
#eof.
Folding-In in Detail
(cf. Berry et al., 1995)

\[m_i = T_k S_k d_i^T \]

(1) convert Original Vector to "D_k"-format

\[d_i = \nu^T T_k S_k^{-1} \]

(2) convert "D_k"-format vector to "M_k"-format