Open Universiteit

Please use this identifier to cite or link to this item: http://hdl.handle.net/1820/4801
Title: Towards a Social Trust-aware Recommender for Teachers
Authors: Fazeli, Soude
Drachsler, Hendrik
Brouns, Francis
Sloep, Peter
Keywords: recommender system
social network
similarity
teacher
sparsity
learning object
Issue Date: 12-Feb-2013
Abstract: Online communities and networked learning provide teachers with social learning opportunities, allowing them to interact and collaborate with others in order to develop their personal and professional skills. However, with the large number of learning resources produced everyday, teachers need to find out what are the most suitable ones for them. In this paper, we introduce recommender systems as a potential solution to this . The setting is the Open Discovery Space (ODS) project. Unfortunately, due to the sparsity of the educational datasets most educational recommender systems cannot make accurate recommendations. To overcome this problem, we propose to enhance a trust-based recommender algorithm with social data obtained from monitoring the activities of teachers within the ODS platform. In this article, we outline the re-quirements of the ODS recommender system based on experiences reported in related TEL recommender system studies. In addition, we provide empirical ev-idence from a survey study with stakeholders of the ODS project to support the requirements identified from a literature study. Finally, we present an agenda for further research intended to find out which recommender system should ul-timately be deployed in the ODS platform.
Description: Fazeli, S., Drachsler, H., Brouns, F., & Sloep, P. B. (2014). Towards a Social Trust-aware Recommender for Teachers. In N. Manouselis, H. Drachsler, K. Verbert & O. C. Santos (Eds.), Recommender Systems for Technology Enhanced Learning (pp. 177-194): Springer New York.
URI: http://hdl.handle.net/1820/4801
Appears in Collections:1. LN: Publications and Preprints

Files in This Item:
File Description SizeFormat 
SFA-journal-2012.pdf707.27 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.