Open Universiteit

Please use this identifier to cite or link to this item:
Title: A Survey on Linked Data and the Social Web as facilitators for TEL recommender systems
Authors: Dietze, Stefan
Drachsler, Hendrik
Daniela, Giordano
Keywords: Linked Data
Semantic Web
Technology-Enhanced Learning
Data Consolidation
Data Integration
Issue Date: 17-Dec-2014
Citation: Dietze, S., Drachsler, H., & Giordano, D. (2014). A Survey on Linked Data and the Social Web as facilitators for TEL recommender systems. In N. Manouselis, K. Verbert, H. Drachsler, & O. C. Santos (Eds.). Recommender Systems for Technology Enhanced Learning: Research Trends & Applications (pp. 47-77).
Abstract: Personalisation, adaptation and recommendation are central features of TEL environments. In this context, information retrieval techniques are applied as part of TEL recommender systems to filter and recommend learning resources or peer learners according to user preferences and requirements. However, the suitability and scope of possible recommendations is fundamentally dependent on the quality and quantity of available data, for instance, metadata about TEL resources as well as users. On the other hand, throughout the last years, the Linked Data (LD) movement has succeeded to provide a vast body of well-interlinked and publicly accessible Web data. This in particular includes Linked Data of explicit or implicit educational nature. The potential of LD to facilitate TEL recommender systems research and practice is discussed in this paper. In particular, an overview of most relevant LD sources and techniques is provided, together with a discussion of their potential for the TEL domain in general and TEL recommender systems in particular. Results from highly related European projects are presented and discussed together with an analysis of prevailing challenges and preliminary solutions.
ISBN: 978-1-4939-0529-4
Appears in Collections:1. TELI Publications, books and conference papers

Files in This Item:
File Description SizeFormat 
Survey_on_LD_and_social_web_4_TEL_recsys.pdf395.44 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons