Open Universiteit

Please use this identifier to cite or link to this item:
Title: Modeling Individual Differences among Writers Using ReaderBench
Authors: Allen, Laura
Dascalu, Mihai
McNamara, Danielle
Crossley, Scott
Trausan-Matu, Stefan
Keywords: writing skill
automated writing evaluation
comprehension prediction
vocabulary measures
natural language processing
Issue Date: Jul-2016
Citation: Allen, L.K., Dascalu, M., McNamara, D.S., Crossley, S., & Trausan-Matu, S. (2016). Modeling Individual Differences among Writers Using ReaderBench. In EduLearn (pp. 5269–5279). Barcelona, Spain: IATED.
Abstract: The current study builds upon a previous study, which examined the degree to which the lexical properties of students’ essays could predict their vocabulary scores. We expand on this previous research by incorporating new natural language processing indices related to both the surface- and discourse-levels of students’ essays. Additionally, we investigate the degree to which these NLP indices can be used to account for variance in students’ reading comprehension skills. We calculated linguistic essay features using our framework, ReaderBench, which is an automated text analysis tools that calculates indices related to linguistic and rhetorical features of text. University students (n = 108) produced timed (25 minutes), argumentative essays, which were then analyzed by ReaderBench. Additionally, they completed the Gates-MacGinitie Vocabulary and Reading comprehension tests. The results of this study indicated that two indices were able to account for 32.4% of the variance in vocabulary scores and 31.6% of the variance in reading comprehension scores. Follow-up analyses revealed that these models further improved when only considering essays that contained multiple paragraph (R2 values = .61 and .49, respectively). Overall, the results of the current study suggest that natural language processing techniques can help to inform models of individual differences among student writers.
ISBN: 978-84-608-8860-4
Appears in Collections:1. RAGE Publications

Files in This Item:
File Description SizeFormat 
2241.pdf236.17 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons