Open Universiteit

Please use this identifier to cite or link to this item:
Title: Modeling Comprehension Processes via Automated Analyses of Dialogism
Authors: Dascalu, Mihai
Allen, Laura
McNamara, Danielle S.
Trausan-Matu, Stefan
Crossley, Scott
Keywords: comprehension
discourse analysis
polyphonic model
Issue Date: 2017
Publisher: Cognitive Science Society
Citation: Dascalu, M., Allen, K. A., McNamara, D. S., Trausan-Matu, S., & Crossley, S. A. (2017). Modeling Comprehension Processes via Automated Analyses of Dialogism. In 39th Annual Meeting of the Cognitive Science Society (CogSci 2017) (pp. 1884–1889). London, UK: Cognitive Science Society.
Abstract: Dialogism provides the grounds for building a comprehensive model of discourse and it is focused on the multiplicity of perspectives (i.e., voices). Dialogism can be present in any type of text, while voices become themes or recurrent topics emerging from the discourse. In this study, we examine the extent that differences between self-explanations and thinkalouds can be detected using computational textual indices derived from dialogism. Students (n = 68) read a text about natural selection and were instructed to generate selfexplanations or think-alouds. The linguistic features of these text responses were analyzed using ReaderBench, an automated text analysis tool. A discriminant function analysis using these features correctly classified 80.9% of the students’ assigned experimental conditions (self-explanation vs. think aloud). Our results indicate that self-explanation promotes text processing that focuses on connected ideas, rather than separate voices or points of view covering multiple topics.
Appears in Collections:1. RAGE Publications

Files in This Item:
File Description SizeFormat 
paper0363.pdf307.89 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons